Arpeggio: Metadata Searching and Content Sharing with €hor

Austin T. Clements, Dan R. K. Ports, David R. Karger
MIT Computer Science and Atrtificial Intelligence Laborator
{acl ements, drkp, karger}@rit.edu

January 21, 2005

Abstract ing peers. However, theokup by nam®HT opera-

Arpeggiois a peer-to-peer file-sharing network based Jion is not immediately sufficient to perform complex

the Chord lookup primitive. Queries for data whose metgf“arCh by contergueries of the data stored in the net-

data matches a certain criterion are performed eﬁicientworlf];_ It_ Is not (I:ITJ?‘IT how to perform Sleamhes Wltgou(;
by using adistributed keyword-set indexaugmented with sacrl |C|_ng scalability or query cqmp eteness. Indeed,
index-side filtering. We introdudadex gatewaysa tech- the obvious approaches to distributed full-text docu-

nique for minimizing index maintenance overhead. B@-em Sgarch scale poorly [8].)

cause file data is larg&drpeggioemploys subrings to track ”? this pqper, however, we consider Syst.ems, such
live source peers without the cost of inserting the data &S file sharing, that search only over a relatively small
self into the network. Finally, we introdupastfetchinga amount Ofmetada_taaSSOCiated_ with each file, but that
technique that uses information in the index to improve tR&Ve to support highly dynamic and unstable network
availability of rare files. The result is a system that protppomgy' content, and sources. The relative sparsity
vides efficient query operations with the scalability and r@f Per-document information in such systems allows
liability advantages of full decentralization, and a comte fOF t€Chniques that do not apply in general document

distribution system tuned to the requirements and capalﬁ?amh' We presenF th? design fapeggiq which
ities of a peer-to-peer network. uses the bokup primitive of Chord [13] to sup-

) port metadata search and file distribution. This de-
1 Overview and Related Work sign retains many advantages of a central index, such
Peer-to-peer file sharing systems, which let users & completeness and speed of queries, while provid-
cate and obtain files shared by other users, have méngy the scalability and other benefits of full decen-
advantages: they operate more efficiently than the tigglization. Arpeggioresolves queries with a constant
ditional client-server model by utilizing peers’ uploagiumber of Chord lookups. The system can consis-
bandwidth, and can be implemented without a cetently locate even rare files scattered throughout the
tral server. However, many current file sharing sygetwork, thereby achieving near-perfect recall.
tems trade-off scalability for correctness, resulting in In addition to the search process, we consider the
systems that scale well but sacrifice completenesspedcess of distributing content to those who want it,
search results or vice-versa. using subrings [7] to optimize distribution. Instead of
Distributed hash tables have become a standarddismg a DHT-like approach of storing content data di-
constructing peer-to-peer systems because they ovectly in the network on peers that may not have orig-
come the difficulties of quickly and correctly locatinated the data, we use indirect storage in which the
. _original data remains on the originating nodes, and
“This research was conducted as part of the IRIS projegl, | hointers to this data are managed in a DHT-like
(http://project-iris.net/), supported by the Na-

tional Science Foundation under Cooperative Agreement NgsShion. As in traditional file-sharing networks, files
ANI0225660. may only be intermittently available. We propose an

architecture for resolving this problem by recording.2 Distributed Indexing

in the DHT requests for temporarily unavailable files, _ S _

then actively increasing their future availability. ~ A reasonable starting point isdistributed inverted
Like most file-sharing systemarpeggioincludes Ndex In this scheme, the DHT maps each key-

two subsystems concerned with searching and witird to a list of all files whose metadata contains

transferring content. Section 2 examines the probldfi@t keyword. To execute a query, a node performs

of building and querying distributed keyword-set id GET-BLOCK operation for each of the query key-

dexes. Section 3 examines how the indexes are malgrds and intersects the resulting lists. The principal

tained once they have been built. Section 4 turnsdgadvantage is that the keyword index lists can be-

how the topology can be leveraged to improve tff@Me prohibitively long, particularly for very popular
transfer and availability of files. Finally, Section &€ywords, so retrieving the entire list may generate

reviews the novel features of this design. tremendous network traffic.
Performance of a keyword-based distributed in-

2 Searching verted index can be improved by performimglex-
A content-sharing system must be able to translatgige filteringinstead of joining at the querying node.
search query from a user into a list of files that fit trBecause our application postulates that metadata is
description and a method for obtaining them. Eagfall, the entire contents of each item’s metadata can
file shared on the network has an associated setefkept in the index as metadata blockalong with
metadata: the file name, its format, etc. For sorffformation on how to obtain the file contents. To per-
types of data, such as text documents, metadata fisfn a query involving a keyword, we send the full
be extracted manually or algorithmically. Some typegiery to the corresponding index node, and it per-
of files have metadata built-in; for example, ID3 tagerms the filtering and returns only relevant results.
on MP3 music files. This dramatically reduces network traffic at query
Analysis based on required communications cosiisie, since only one index needs to be contacted and
suggests that peer-to-peer keyword indexing of tbaly results relevant to the full query are transmit-
Web is infeasible because of the size of the data g&dl. This is similar to the search algorithm used by
[8]. However, peer-to-peer indexing for metadata réhe Overnet network [11], which uses the Kadem-
mains feasible, because the size of metadata is kx-DHT [9]. Note that index-side filtering breaks
pected to be only a few keywords, much smaller thate standard DHT &T1-BLOCK abstraction by adding
the full text of an average Web page. network-side processing, demonstrating the utility of

21 Background direct use of the bokuP primitive.

Structured overlay networks based on distributeds K eyword-Set Indexing

hash tables show promise for simultaneously achiev-

ing the recall advantages of a centralized index awhile filtering reduces network usage, query load
the scalability and resiliency attributes of decentralkay be unfairly distributed, overloading nodes re-
ization. Distributed hash location services such agonsible for popular keywords. To overcome this
Chord [13] provide an efficient hokupP primitive problem, we propose to build inverted indexes not
that maps a key to the node responsible for its valmly on keywords but also on keywosgts As be-
Chord uses at mosb(logn) messages per lookugfore, each unique file has a corresponding metadata
in ann-machine network, and minimal overhead fdslock that holds all of its metadata. Now, however,
routing table maintenance. Building on this primitivean identical copy of this metadata block is stored in
DHash [3] and other distributed hash tables provide index corresponding to each subset of at niost
a standard GT-BLOCK/PUT-BLOCK hash table ab- metadata terms. The maximum set sigés a param-
straction. However, this interface alone is insufficiemter of the network. This is the Keyword-Set Search
for efficient keyword-based search. system (KSS) introduced by Gnawali [5].

Essentially, this scheme allows us to precomputs; 2

the full-index answer to all queries of up 6 key- 256 |- +‘ K‘ =1 | =
words. For queries of more thali keywords, the 128 |-~~°"~ % - % gt
index for a randomly chosef -keyword subset of 64 —_ _._ g _ 4 R AT
the query can be filtered. This approach has the®f?2 - —=— K =oco _#%~ ;;,/v”’&’
fect of querying smaller and more distributed indexes!6 [,4;’,';/*"”

whenever possible, thus alleviating unfair query load i : P = |
caused by queries of more than one keyword. B |

Since the majority of searches contain multiple \ \ \ \ \ \

\
keywords [12], large indexes are no longer critical 1 2 3 4 5
to result quality as most queries will be handled by m
smaller, more specific indexes. To reduce storage re- gigyre 1: Growth off () for variouskK
gquirements, maximum index size can be limited, pref-

erentially retaining entries that exist in fewest oth@gactical to encode this information in keyword in-
indexes, i.e. those with fewest total keywords. gexes, but the index obtained via a KSS query can
Using keyword set indexes rather than keyword igxsily pe filtered by these criteria. The combination

dexes increases the number of index entries for a f§ekss indexing and index-side filtering increases

K . :
IW):Z(@):{Q -1 !fmgK 3 Index Maintenance
= \? omX) ifm>K

_ _ _ Peers are constantly joining and leaving the network.
For files with many metadata keywordgyn) is poly- Thys; the search index must respond dynamically to
nomial inm. Furthermore, itm is small compared 0 he shifting availability of the data it is indexing and
K (as for files with few keywords), thef(im) is N0 the nodes on which the index resides. Furthermore,
worse than exponential im. Further analysis will be certain changes in the network, such as nodes leaving
necessary to identify the optimum value for the pgithout notification, may go unnoticed, and polling

1.
rameterk=; however, the average number of termg; these changing conditions is too costly, so the in-
for web searches is approximatedyp3 [12], SOK IS dex must be maintained by passive means.
likely to be around3, and thusZ(m) will be a low-

degree polynomial imn. 3.1 Metadata Expiration

In Arpeggiog we combine KSS indexing with
index-side filtering, as described above: indexes angtead of polling for departures, or expecting nodes
built for keyword sets and results are filtered on the notify us of them, we expire metadata on a regular
index nodes. We make a distinction betwé&egword basis so that long-absent files will not be returned by a
metadata which is easily enumerable and excludessarch. Nevertheless, blocks may contain out-of-date
stopwords, and therefore can be used to partition references to files that are no longer accessible. Thus,
dexes with KSS, andilterable metadatawhich can a requesting peer must be able to gracefully handle
further constrain a search. Index-side filtering allowsilure to contact source peers. To counteract expi-
for more complex searches than KSS alone. A usation, werefreshmetadata that is still valid, thereby
may only be interested in files of size greater thanpériodically resetting its expiration counter. We ar-
MB, files int ar . gz format, or MP3 files with a bi- gue in Section 4.3 that there is value in long expira-
trate greater than 128 Kbps, for example. It is ntibn times for metadata, as it not only allows for low

We are currently investigating the effectiveness of med;ho{je fresh rates, but for tracking of attempts 1o access

for splitting indexes into more specific indexes only whengee Missing files in order to artificially replicate them to
sary (essentially, adaptinj per index). improve availability.

3.2 Index Gateways

If each node directly maintains its own files’ metadata

in the distributed index, the metadata block for each

file will be inserted repeatedly. Consider a fHethat

hasm metadata keywords and is shared dogodes.

Then each of the nodes will attempt to insert the

file's metadata block into thé(m) indexes in which | I;: a || I,: b ||I5: ab

it belongs. The total cost for inserting the file is there{ Mp || Mp Mp

fore © (sI(m)) messages. Since metadata blocks

simply contain the keywords of a file, not informaFigure 2: Two source nodes -, inserting file meta-

tion about which peers are sharing the file, each nadigta block)M to three index nodes » 3, with (right)

will be inserting thesamemetadata block repeatedlyand without (left) a gateway node

This is both expensive and redundant. Moreover, the

cost is further increased by each node repeatedly ¢8ding [3]. Furthermore, because replicated indexes

newing its insertions to prevent their expiration. ~ aré independent, any node in the index group can
To minimize this redundancy, we introduce ian handle any request pertaining to the index (such as a

dex gatewayode that aggregates index insertion. |query or inserti_on) Wit_hout interacting With any other
dex gateways are not required for correct index op&2des- Arpeggiorequires onlyweak consistencpf
ation, but they increase the efficiency of index insdfld€Xes, so index insertions can be propagated peri-
tion. With gateways, rather than directly inserting @dically and in large batches as part of index replica-
file's metadata blocks into the index, each peer serif- Expiration can be performed independently.

a single copy of the block to the gateway responsj- PO
ble for the block (found via a hokuP of the block’s 4 Content Distribution
hash). The gateway then inserts the metadata blddie indexing system we describe above simply pro-
into all of the appropriate indexes, bomly if neces- vides the ability to search for files that match certain
sary. If the block already exists in the network and @iteria. It is independent of the file transfer mecha-
not scheduled to expire soon, then there is no needhism. Thus, it is possible to use an existing content
re-insert it into the network. A gateway only needs whistribution network in conjunction witArpeggia A
refresh metadata blocks when the blocks in the neimple implementation might simply store a HTTP
work are due to expire soon, but the copy of the blotkRL for the file in the metadata blocks, or a pointer
held by the gateway has been more recently refreshiethb a content distribution network such as Coral [4].
Gateways dramatically decrease the total cost ®DHT can be used for direct storage of file contents,
multiple nodes to insert the same file into the ir&s in distributed storage systems like CFS [2]. For a
dex. Using gateways, each source node sends diysharing network, direct storage is impractical be-
one metadata block to the gateway, which is no marause the amount of churn [6] and the content size
costly than inserting into a centralized index. Thereate high maintenance costs.

index gateway only contacts thi§m) index nodes Instead,Arpeggio usesindirect storage it main-
once, thereby reducing the total cost fréh{s/(m)) tains pointers to each peer that contains a certain file.
t0 © (s + I(m)). Using these pointers, a peer can identify other peers
that are sharing content it wishes to obtain. Because
these pointers are small, they can easily be main-
In order to maintain the index despite node failurégined by the network, even under high churn, while
index replication is also necessary. Because mefze large file content remains on its originating nodes.
data blocks are small and reading from indexes mdstis indirection retains the distributed lookup abil-
be low-latency, replication is used instead of erasutes of direct storage, while still accommodating a

.[12 a IQI b .[32 ab
Mp Mp Mp

3.3 Index Replication

4

Trandation Method a change in metadata may affect all of the chunks be-
keywords— file IDs | keyword-set index search cause the remainder of the file will now be “out of
file ID — chunk IDs | standard DHT lookup | frame” with the original. Likewise, a more recent
chunk ID— sources| content-sharing subring version of a document may contain insertions or dele-

Table 1: Layers of lookup indirection tions, which would cause the remainder of the docu-
ment to be out of frame and negate some of the ad-

highly dynarnic_ network topology, but may sacrificgantages of fixed-length chunking.
content availability. To solve this problem, we choose variable length
41 Segmentation chunks based on content, using a chunking algorithm

derived from the LBFS file system [10]. Due to the

Eor purposes of content distribution, we segme_nt ch‘ty chunk boundaries are chosen, even if content
files into a sequence ahunks Rather than trackings 5 44ed or removed in the middle of the file, the

which peers are sharing a certain ftepeggiotracks remainder of the chunks will not change. While

which chunks _comprise each file, a_nd_WhiCh PEerS 3Bt recent networks, such as FastTrack, BitTorrent,
currently sharing each chunk. This is implemented, oponiey, divide files into chunks, promoting the
by storing in the DHT dile blockfor each file, which sharing of partial data between pegkspeggics seg-

contains a list othunk IDs which can be used 10 10- o ytation algorithm additionally promotes sharing of
cate the sources of that chunk, as in Table 1. File a@gtabetween files

chunk IDs are derived from the hash of their contents
to ensure that file integrity can be verified. 4.2 Content-Sharing Subrings

The rationale for this design is twofold. First, peerfo download a chunk, a peer must discover one or
that do not have an entire file are able to share there sources for this chunk. A simple solution for
chunks they do have: a peer that is downloading pgiis problem is to maintain a list of peers that have the
of a file can at the same time upload other parts ¢dhunk available, which can be stored in the DHT or
different peers. This makes efficient use of otherwigandled by a designated “tracker” node as in BitTor-
unused upload bandwidth. For example, Gnutellant [1]. However, the node responsible for tracking
does not use chunking, requiring peers to complek® peers sharing a popular chunk represents a single
downloads before sharing them. Second, multig®int of failure that may become overloaded.
files may contain the same chunk. A peer can obtainwe instead usesubringsto identify sources for
part of a file from peers that do not have an exactach chunk, distributing the query load throughout
identical file, but merely aimilar file. the network. The Diminished Chord protocol [7] al-

Though it seems unlikely that multiple files wouldows any subset of the nodes to form a named “sub-
share the same chunks, file sharing networks frérg” and allows Lookup operations that find nodes
quently contain multiple versions of the same filie that subring inO (logn) time, with constant stor-
with largely similar content. For example, multiage overhead per node in the subring. We create a
ple versions of the same document may coexist suibring for each chunk, where the subring is iden-
the network with most content shared between thetified by the chunk ID and consists of the nodes that
Similarly, users often have MP3 files with the sanwre sharing that chunk. To obtain a chunk, a node per-
audio content but different ID3 metadata tags. Dividlerms a Lookup for a random Chord ID in the sub-
ing the file into chunks allows the bulk of the dateing to discover the address of one of the sources. It
to be downloaded from any peer that shares it, rathieen contacts that node and requests the chunk. If the
than only the ones with the same version. contacted node is unavailable or overloaded, the re-

However, it is not sufficient to use a segmentatiaquesting node may perform anothenpakup to find
scheme that draws the boundaries between chunka different source. When a node has finished down-
regular intervals. In the case of MP3 files, since IDBading a chunk, it becomes a source and can join
tags are stored in a variable-length region of the fillae subring. Content-sharing subrings offer a general

5

mechanism for managing data that may be prohibitivegs that uses chunking to leverage file similarity,
to manage with regular DHTSs. and thereby optimize availability and transfer speed.
43 Postfetching sz_iilability is further enhanced with postfetching,
which uses cache space on other peers to replicate
To increase the availability of fileg\rpeggiocaches rare but demanded files. Together, these components
file chunks on nodes that would not otherwise be shagsult in a design that couples reliable searching with

ing the chunks. Cached chunks are indexed the sagficient content distribution to form a fully decentral-
way as regular chunks, so they do not share the dispéd content sharing system.

vantages of direct DHT storage with regards to haﬁ'eferences
ing to maintain the chunks despite topology changes.
Furthermore, this insertion symmetry makes cachin

transparent to the s_earph system. Ur_1I|ke in direct S_tOL_ F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and
age systems, caching is non-essential to the function- | “gysica. Wide-area cooperative storage with CFS.
ing of the network, and therefore each peer can place |n proc. SOSP '010ct. 2001.
a reasonable upper bound on its cache storage size[3] F. Dabek, J. Li, E. Sit, J. Robertson, M. F. Kaashoek,
Postfetching provides a mechanism by which and R. Morris. Designing a DHT for low latency and
caching can increase the supply of rare files in re- high throughput. IrProc. NSDI'04 Mar. 2004.
sponse to demandRequest blocksre introduced 4] M. J. Freedman, E. Freudti_nthgl, a”th' Ma|2|eres.
to the network to capture requests for unavailable gs)t‘oﬁr;glz'%i lc\:/loar;tezr(l)toau ication with Coral. —In
files. Due to the ang gxplratlon time of metadata[S] O. Gnawali. A keyword set search system for peer-
bIOCkS, peerS can f|nd f|IeS Whose sources are tem- to_peer networksy June 2002. Master’s thesisy Mas-
porarily unavailable. The peer can then insert a re- sachusetts Institute of Technology.
guest block into the network for a particular unavail{6] K.P. Gummadi, R. J. Dunn, S. Sariou, S. D. Gribble,
able file. When a source of that file rejoins the net- H. M. Levy, and J. Zahorjan. Measurement, model-
work it will find the request block and actively in- :ngaaTdPanalyésgé);?opB%er;tt;—gggrflle-sharlng work-
. f oaa. InkFroc. CL. .
crease the supp_ly of the requested file by sending t D. R. Karger and M. Ruhl. Diminished Chord: A
contents of the f|Ie_ chunk_s to the caches of randoml =" protocol for heterogeneous subgroup formation in
selected nodes with available cache space. These in peer.tg-peer networks. IRroc. IPTPS 04 Feb.
turn register as sources for those chunks, increasing 2004.

their availability. Thus, the future supply of rare files[8] J. Li, B. T. Loo, J. M. Hellerstein, M. F. Kaashoek,

] BitTorrent protocol specification. http://
bittorrent.conf protocol.htn.

is actively balanced out to meet their demand. D. Karger, and R. Morris. On the feasibility of peer-
) to-peer web indexing and search Rroc. IPTPS '03
5 Conclusion Feb. 2003.

We have presented the key features of Arpeggio [9] P. Maymounkov and D. Maziéres. Kademlia: A peer-
to-peer information system based on the XOR met-

content sharing system\rpeggiodiffers _from p_re_vi— ric. In Proc. IPTPS '02Mar. 2002.

ous peer-to-peer file sharing systems in that it |mpIﬁD] A. Muthitacharoen, B. Chen, and D. Mazieres. A

ments both a metadata indexing system and a con- |ow-bandwidth network file system. IRroc. SOSP

tent distribution system using a distributed lookup '01, Oct. 2001.

algorithm. We extend the standard DHT interfadél] Overnet.htt p://ww. over net. con .

to support not only lookup by key but Comp|e*12] P. Reynolds and A. Vahdat. Efficient peer-to-peer

search queries. Keyword-set indexing and exten- ';%‘g’ord searching. liProc. Middleware 03 June

2:\!12 f?lf;\;\i/r?rk—.ﬂde processing in the ‘TO”T‘ of mde)EL&] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger,
g, index gateways, and expiration are us M. F. Kaashoek, F. Dabek, and H. Balakrishnan.

to address the scalability problems inherent in diS- chord: a scalable peer-to-peer lookup protocol for

tributed document indexing. We introduce a content- internet applications. IEEE/ACM Trans. Netw.

distribution system based on indirect storage via sub- 11(1):17-32, 2003.

6

