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Abstract

Arpeggio is a peer-to-peer file-sharing network based on
the Chord lookup primitive. Queries for data whose meta-
data matches a certain criterion are performed efficiently
by using adistributed keyword-set index, augmented with
index-side filtering. We introduceindex gateways, a tech-
nique for minimizing index maintenance overhead. Be-
cause file data is large,Arpeggioemploys subrings to track
live source peers without the cost of inserting the data it-
self into the network. Finally, we introducepostfetching, a
technique that uses information in the index to improve the
availability of rare files. The result is a system that pro-
vides efficient query operations with the scalability and re-
liability advantages of full decentralization, and a content
distribution system tuned to the requirements and capabil-
ities of a peer-to-peer network.

1 Overview and Related Work

Peer-to-peer file sharing systems, which let users lo-
cate and obtain files shared by other users, have many
advantages: they operate more efficiently than the tra-
ditional client-server model by utilizing peers’ upload
bandwidth, and can be implemented without a cen-
tral server. However, many current file sharing sys-
tems trade-off scalability for correctness, resulting in
systems that scale well but sacrifice completeness of
search results or vice-versa.

Distributed hash tables have become a standard for
constructing peer-to-peer systems because they over-
come the difficulties of quickly and correctly locat-
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ing peers. However, thelookup by nameDHT opera-
tion is not immediately sufficient to perform complex
search by contentqueries of the data stored in the net-
work. It is not clear how to perform searches without
sacrificing scalability or query completeness. Indeed,
the obvious approaches to distributed full-text docu-
ment search scale poorly [8].

In this paper, however, we consider systems, such
as file sharing, that search only over a relatively small
amount ofmetadataassociated with each file, but that
have to support highly dynamic and unstable network
topology, content, and sources. The relative sparsity
of per-document information in such systems allows
for techniques that do not apply in general document
search. We present the design forArpeggio, which
uses the LOOKUP primitive of Chord [13] to sup-
port metadata search and file distribution. This de-
sign retains many advantages of a central index, such
as completeness and speed of queries, while provid-
ing the scalability and other benefits of full decen-
tralization.Arpeggioresolves queries with a constant
number of Chord lookups. The system can consis-
tently locate even rare files scattered throughout the
network, thereby achieving near-perfect recall.

In addition to the search process, we consider the
process of distributing content to those who want it,
using subrings [7] to optimize distribution. Instead of
using a DHT-like approach of storing content data di-
rectly in the network on peers that may not have orig-
inated the data, we use indirect storage in which the
original data remains on the originating nodes, and
small pointers to this data are managed in a DHT-like
fashion. As in traditional file-sharing networks, files
may only be intermittently available. We propose an
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architecture for resolving this problem by recording
in the DHT requests for temporarily unavailable files,
then actively increasing their future availability.

Like most file-sharing systems,Arpeggioincludes
two subsystems concerned with searching and with
transferring content. Section 2 examines the problem
of building and querying distributed keyword-set in-
dexes. Section 3 examines how the indexes are main-
tained once they have been built. Section 4 turns to
how the topology can be leveraged to improve the
transfer and availability of files. Finally, Section 5
reviews the novel features of this design.

2 Searching

A content-sharing system must be able to translate a
search query from a user into a list of files that fit the
description and a method for obtaining them. Each
file shared on the network has an associated set of
metadata: the file name, its format, etc. For some
types of data, such as text documents, metadata can
be extracted manually or algorithmically. Some types
of files have metadata built-in; for example, ID3 tags
on MP3 music files.

Analysis based on required communications costs
suggests that peer-to-peer keyword indexing of the
Web is infeasible because of the size of the data set
[8]. However, peer-to-peer indexing for metadata re-
mains feasible, because the size of metadata is ex-
pected to be only a few keywords, much smaller than
the full text of an average Web page.

2.1 Background

Structured overlay networks based on distributed
hash tables show promise for simultaneously achiev-
ing the recall advantages of a centralized index and
the scalability and resiliency attributes of decentral-
ization. Distributed hash location services such as
Chord [13] provide an efficient LOOKUP primitive
that maps a key to the node responsible for its value.
Chord uses at mostO(log n) messages per lookup
in ann-machine network, and minimal overhead for
routing table maintenance. Building on this primitive,
DHash [3] and other distributed hash tables provide
a standard GET-BLOCK/PUT-BLOCK hash table ab-
straction. However, this interface alone is insufficient
for efficient keyword-based search.

2.2 Distributed Indexing

A reasonable starting point is adistributed inverted
index. In this scheme, the DHT maps each key-
word to a list of all files whose metadata contains
that keyword. To execute a query, a node performs
a GET-BLOCK operation for each of the query key-
words and intersects the resulting lists. The principal
disadvantage is that the keyword index lists can be-
come prohibitively long, particularly for very popular
keywords, so retrieving the entire list may generate
tremendous network traffic.

Performance of a keyword-based distributed in-
verted index can be improved by performingindex-
side filteringinstead of joining at the querying node.
Because our application postulates that metadata is
small, the entire contents of each item’s metadata can
be kept in the index as ametadata block, along with
information on how to obtain the file contents. To per-
form a query involving a keyword, we send the full
query to the corresponding index node, and it per-
forms the filtering and returns only relevant results.
This dramatically reduces network traffic at query
time, since only one index needs to be contacted and
only results relevant to the full query are transmit-
ted. This is similar to the search algorithm used by
the Overnet network [11], which uses the Kadem-
lia DHT [9]. Note that index-side filtering breaks
the standard DHT GET-BLOCK abstraction by adding
network-side processing, demonstrating the utility of
direct use of the LOOKUP primitive.

2.3 Keyword-Set Indexing

While filtering reduces network usage, query load
may be unfairly distributed, overloading nodes re-
sponsible for popular keywords. To overcome this
problem, we propose to build inverted indexes not
only on keywords but also on keywordsets. As be-
fore, each unique file has a corresponding metadata
block that holds all of its metadata. Now, however,
an identical copy of this metadata block is stored in
an index corresponding to each subset of at mostK

metadata terms. The maximum set sizeK is a param-
eter of the network. This is the Keyword-Set Search
system (KSS) introduced by Gnawali [5].
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Essentially, this scheme allows us to precompute
the full-index answer to all queries of up toK key-
words. For queries of more thanK keywords, the
index for a randomly chosenK-keyword subset of
the query can be filtered. This approach has the ef-
fect of querying smaller and more distributed indexes
whenever possible, thus alleviating unfair query load
caused by queries of more than one keyword.

Since the majority of searches contain multiple
keywords [12], large indexes are no longer critical
to result quality as most queries will be handled by
smaller, more specific indexes. To reduce storage re-
quirements, maximum index size can be limited, pref-
erentially retaining entries that exist in fewest other
indexes, i.e. those with fewest total keywords.

Using keyword set indexes rather than keyword in-
dexes increases the number of index entries for a file
with m metadata keywords fromm to I(m), where

I(m) =

K
∑

i=1

(

m

i

)

=

{

2m − 1 if m ≤ K

O(mK) if m > K

For files with many metadata keywords,I(m) is poly-
nomial inm. Furthermore, ifm is small compared to
K (as for files with few keywords), thenI(m) is no
worse than exponential inm. Further analysis will be
necessary to identify the optimum value for the pa-
rameterK1; however, the average number of terms
for web searches is approximately2.53 [12], soK is
likely to be around3, and thusI(m) will be a low-
degree polynomial inm.

In Arpeggio, we combine KSS indexing with
index-side filtering, as described above: indexes are
built for keyword sets and results are filtered on the
index nodes. We make a distinction betweenkeyword
metadata, which is easily enumerable and excludes
stopwords, and therefore can be used to partition in-
dexes with KSS, andfilterable metadata, which can
further constrain a search. Index-side filtering allows
for more complex searches than KSS alone. A user
may only be interested in files of size greater than 1
MB, files in tar.gz format, or MP3 files with a bi-
trate greater than 128 Kbps, for example. It is not

1We are currently investigating the effectiveness of methods
for splitting indexes into more specific indexes only when neces-
sary (essentially, adaptingK per index).
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Figure 1: Growth ofI(m) for variousK

practical to encode this information in keyword in-
dexes, but the index obtained via a KSS query can
easily be filtered by these criteria. The combination
of KSS indexing and index-side filtering increases
both query efficiency and precision.

3 Index Maintenance

Peers are constantly joining and leaving the network.
Thus, the search index must respond dynamically to
the shifting availability of the data it is indexing and
the nodes on which the index resides. Furthermore,
certain changes in the network, such as nodes leaving
without notification, may go unnoticed, and polling
for these changing conditions is too costly, so the in-
dex must be maintained by passive means.

3.1 Metadata Expiration

Instead of polling for departures, or expecting nodes
to notify us of them, we expire metadata on a regular
basis so that long-absent files will not be returned by a
search. Nevertheless, blocks may contain out-of-date
references to files that are no longer accessible. Thus,
a requesting peer must be able to gracefully handle
failure to contact source peers. To counteract expi-
ration, werefreshmetadata that is still valid, thereby
periodically resetting its expiration counter. We ar-
gue in Section 4.3 that there is value in long expira-
tion times for metadata, as it not only allows for low
refresh rates, but for tracking of attempts to access
missing files in order to artificially replicate them to
improve availability.
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3.2 Index Gateways

If each node directly maintains its own files’ metadata
in the distributed index, the metadata block for each
file will be inserted repeatedly. Consider a fileF that
hasm metadata keywords and is shared bys nodes.
Then each of thes nodes will attempt to insert the
file’s metadata block into theI(m) indexes in which
it belongs. The total cost for inserting the file is there-
fore Θ (sI(m)) messages. Since metadata blocks
simply contain the keywords of a file, not informa-
tion about which peers are sharing the file, each node
will be inserting thesamemetadata block repeatedly.
This is both expensive and redundant. Moreover, the
cost is further increased by each node repeatedly re-
newing its insertions to prevent their expiration.

To minimize this redundancy, we introduce anin-
dex gatewaynode that aggregates index insertion. In-
dex gateways are not required for correct index oper-
ation, but they increase the efficiency of index inser-
tion. With gateways, rather than directly inserting a
file’s metadata blocks into the index, each peer sends
a single copy of the block to the gateway responsi-
ble for the block (found via a LOOKUP of the block’s
hash). The gateway then inserts the metadata block
into all of the appropriate indexes, butonly if neces-
sary. If the block already exists in the network and is
not scheduled to expire soon, then there is no need to
re-insert it into the network. A gateway only needs to
refresh metadata blocks when the blocks in the net-
work are due to expire soon, but the copy of the block
held by the gateway has been more recently refreshed.

Gateways dramatically decrease the total cost for
multiple nodes to insert the same file into the in-
dex. Using gateways, each source node sends only
one metadata block to the gateway, which is no more
costly than inserting into a centralized index. The
index gateway only contacts theI(m) index nodes
once, thereby reducing the total cost fromΘ (sI(m))
to Θ (s + I(m)).

3.3 Index Replication

In order to maintain the index despite node failure,
index replication is also necessary. Because meta-
data blocks are small and reading from indexes must
be low-latency, replication is used instead of erasure
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Figure 2: Two source nodesS1,2, inserting file meta-
data blockMF to three index nodesI1,2,3, with (right)
and without (left) a gateway nodeG

coding [3]. Furthermore, because replicated indexes
are independent, any node in the index group can
handle any request pertaining to the index (such as a
query or insertion) without interacting with any other
nodes. Arpeggio requires onlyweak consistencyof
indexes, so index insertions can be propagated peri-
odically and in large batches as part of index replica-
tion. Expiration can be performed independently.

4 Content Distribution

The indexing system we describe above simply pro-
vides the ability to search for files that match certain
criteria. It is independent of the file transfer mecha-
nism. Thus, it is possible to use an existing content
distribution network in conjunction withArpeggio. A
simple implementation might simply store a HTTP
URL for the file in the metadata blocks, or a pointer
into a content distribution network such as Coral [4].
A DHT can be used for direct storage of file contents,
as in distributed storage systems like CFS [2]. For a
file sharing network, direct storage is impractical be-
cause the amount of churn [6] and the content size
create high maintenance costs.

Instead,Arpeggiousesindirect storage: it main-
tains pointers to each peer that contains a certain file.
Using these pointers, a peer can identify other peers
that are sharing content it wishes to obtain. Because
these pointers are small, they can easily be main-
tained by the network, even under high churn, while
the large file content remains on its originating nodes.
This indirection retains the distributed lookup abil-
ities of direct storage, while still accommodating a
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Translation Method
keywords→ file IDs keyword-set index search
file ID → chunk IDs standard DHT lookup
chunk ID→ sources content-sharing subring

Table 1: Layers of lookup indirection

highly dynamic network topology, but may sacrifice
content availability.

4.1 Segmentation

For purposes of content distribution, we segment all
files into a sequence ofchunks. Rather than tracking
which peers are sharing a certain file,Arpeggiotracks
which chunks comprise each file, and which peers are
currently sharing each chunk. This is implemented
by storing in the DHT afile blockfor each file, which
contains a list ofchunk IDs, which can be used to lo-
cate the sources of that chunk, as in Table 1. File and
chunk IDs are derived from the hash of their contents
to ensure that file integrity can be verified.

The rationale for this design is twofold. First, peers
that do not have an entire file are able to share the
chunks they do have: a peer that is downloading part
of a file can at the same time upload other parts to
different peers. This makes efficient use of otherwise
unused upload bandwidth. For example, Gnutella
does not use chunking, requiring peers to complete
downloads before sharing them. Second, multiple
files may contain the same chunk. A peer can obtain
part of a file from peers that do not have an exactly
identical file, but merely asimilar file.

Though it seems unlikely that multiple files would
share the same chunks, file sharing networks fre-
quently contain multiple versions of the same file
with largely similar content. For example, multi-
ple versions of the same document may coexist on
the network with most content shared between them.
Similarly, users often have MP3 files with the same
audio content but different ID3 metadata tags. Divid-
ing the file into chunks allows the bulk of the data
to be downloaded from any peer that shares it, rather
than only the ones with the same version.

However, it is not sufficient to use a segmentation
scheme that draws the boundaries between chunks at
regular intervals. In the case of MP3 files, since ID3
tags are stored in a variable-length region of the file,

a change in metadata may affect all of the chunks be-
cause the remainder of the file will now be “out of
frame” with the original. Likewise, a more recent
version of a document may contain insertions or dele-
tions, which would cause the remainder of the docu-
ment to be out of frame and negate some of the ad-
vantages of fixed-length chunking.

To solve this problem, we choose variable length
chunks based on content, using a chunking algorithm
derived from the LBFS file system [10]. Due to the
way chunk boundaries are chosen, even if content
is added or removed in the middle of the file, the
remainder of the chunks will not change. While
most recent networks, such as FastTrack, BitTorrent,
and eDonkey, divide files into chunks, promoting the
sharing of partial data between peers,Arpeggio’s seg-
mentation algorithm additionally promotes sharing of
databetween files.

4.2 Content-Sharing Subrings

To download a chunk, a peer must discover one or
more sources for this chunk. A simple solution for
this problem is to maintain a list of peers that have the
chunk available, which can be stored in the DHT or
handled by a designated “tracker” node as in BitTor-
rent [1]. However, the node responsible for tracking
the peers sharing a popular chunk represents a single
point of failure that may become overloaded.

We instead usesubrings to identify sources for
each chunk, distributing the query load throughout
the network. The Diminished Chord protocol [7] al-
lows any subset of the nodes to form a named “sub-
ring” and allows LOOKUP operations that find nodes
in that subring inO (log n) time, with constant stor-
age overhead per node in the subring. We create a
subring for each chunk, where the subring is iden-
tified by the chunk ID and consists of the nodes that
are sharing that chunk. To obtain a chunk, a node per-
forms a LOOKUP for a random Chord ID in the sub-
ring to discover the address of one of the sources. It
then contacts that node and requests the chunk. If the
contacted node is unavailable or overloaded, the re-
questing node may perform another LOOKUP to find
a different source. When a node has finished down-
loading a chunk, it becomes a source and can join
the subring. Content-sharing subrings offer a general

5



mechanism for managing data that may be prohibitive
to manage with regular DHTs.

4.3 Postfetching

To increase the availability of files,Arpeggiocaches
file chunks on nodes that would not otherwise be shar-
ing the chunks. Cached chunks are indexed the same
way as regular chunks, so they do not share the disad-
vantages of direct DHT storage with regards to hav-
ing to maintain the chunks despite topology changes.
Furthermore, this insertion symmetry makes caching
transparent to the search system. Unlike in direct stor-
age systems, caching is non-essential to the function-
ing of the network, and therefore each peer can place
a reasonable upper bound on its cache storage size.

Postfetching provides a mechanism by which
caching can increase the supply of rare files in re-
sponse to demand.Request blocksare introduced
to the network to capture requests for unavailable
files. Due to the long expiration time of metadata
blocks, peers can find files whose sources are tem-
porarily unavailable. The peer can then insert a re-
quest block into the network for a particular unavail-
able file. When a source of that file rejoins the net-
work it will find the request block and actively in-
crease the supply of the requested file by sending the
contents of the file chunks to the caches of randomly-
selected nodes with available cache space. These in
turn register as sources for those chunks, increasing
their availability. Thus, the future supply of rare files
is actively balanced out to meet their demand.

5 Conclusion

We have presented the key features of theArpeggio
content sharing system.Arpeggiodiffers from previ-
ous peer-to-peer file sharing systems in that it imple-
ments both a metadata indexing system and a con-
tent distribution system using a distributed lookup
algorithm. We extend the standard DHT interface
to support not only lookup by key but complex
search queries. Keyword-set indexing and exten-
sive network-side processing in the form of index-
side filtering, index gateways, and expiration are used
to address the scalability problems inherent in dis-
tributed document indexing. We introduce a content-
distribution system based on indirect storage via sub-

rings that uses chunking to leverage file similarity,
and thereby optimize availability and transfer speed.
Availability is further enhanced with postfetching,
which uses cache space on other peers to replicate
rare but demanded files. Together, these components
result in a design that couples reliable searching with
efficient content distribution to form a fully decentral-
ized content sharing system.
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