Conservation vs. Consensus in 1
Peer-to-Peer Preservation Systems

Prashanth P. Bungale, Geoffrey Goodell, Mema Roussopoulos
Division of Engineering and Applied Sciences, Harvard énsity
{prash, goodell, menj@eecs.harvard.edu

Abstract—

The problem of digital preservation is widely acknowledged
but the underlying assumptions implicit to the design of syeems
that address this problem have not been analyzed explicitliywe
identify two basic approaches to address the problem of diggl
preservation using peer-to-peer systemsconservation and con-
sensus. We highlight the design tradeoffs involved in using the
two general approaches, and we provide a framework for an-
alyzing the characteristics of peer-to-peer preservatiorsystems
in general. In addition, we propose a novel conservation-tsed
protocol for achieving preservation and we analyze its effetive-

copy, even if that sometimes involves replacing the cur-
rent copy with a new one.

CONSERVATION. The goal is for each peer to retain in-
definitely the exact copy of the AU that it holds initially;
that is to say that as— oo, we have that/i, ¢ : p;(t) =
pi(to). In essence, each peer believes that the version of
the AU it starts with is the “right” version, and it always
attempts to preserve this copy, even if other peers dis-
agree. When it suffers a damage to its AU, it seeks the
help of other peers to recover this right version.

ness with respect to our framework. There is a fundamental trade-off between these two ap-

proaches. If a peer happens to have a wrong version, con-
serving the data as itis is detrimental to preservation, whereas
consensus helps preserve the right version if the other peers
Recently, a number of peer-to-peer approaches have brgppen to supply the right version as the consensus version.
proposed to address the problempoéservation(e.g., [4], On the other hand, if a peer happens to have the right version,
(7], [11], [2], [3], [6]). In their attempt to preserve some datgonserving the data as it is helps preserve the right version,
so that it is available in the future, these systems face a nufhereas consensus can potentially cause it to get infected with
ber of challenges including dealing with natural degradation#wrong version (if the other peers happen to supply a wrong
storage media, catastrophic events or human errors, attackgdgion to it as the consensus version).
adversaries attemtping to change the data preserved, as wefhe rest of the paper proceeds as follows. In Section 2,
as providing incentives to other peers to help in the presgfe present our framework for analyzing the design tradeoffs
vation task. These systems differ in their approaches and g&r-to-peer preservation systems must make and we describe
systems’ designers characterize their approaches in differgqt factors that affect the success of such a system. In Sec-
ways: archiving, backup, digital preservation. But these pegibn 3, we describe an example of a peer-to-peer system that
to-peer systems share a basic premise: that each peer is iRigibodies the consensus approach and discuss where it falls
ested in preserving one or maaechival units(AUs) and uses within our design framework. This is the well-documented
the aid and resources of other peers to achieve its goal. | OCKSS peer-to-peer digital preservation system [7], [9]. In
In this paper we provide a framework for analyzing thgection 4, we describe and analyze Sierra, a new conservation-
characteristics and highlighting the design tradeoffs of pe@ased peer-to-peer approach to the digital preservation prob-
to-peer preservation approaches. Suppose that our preseef; that is inspired by the LOCKSS protocol, but that departs
tion system involves each AU of interest being replicated @indamentally from the consensus-based LOCKSS approach.
a subset of the peer population. Consider a particular archiyaection 5 we conclude.
unit being replicated on a subset consisting pkeers, denoted
(p1,p2, ---, Pn)- We usep;(t) to denote the copy of the archival
unit held by peep; at time¢. To simplify the scenario some-
what, presume that all peers enter the system attym&e The design choice between conservation and consensus is
assert that there are two basic approaches to providing preget- straightforward, but involves balancing and prioritizing
vation: various conflicting goals and choosing the best suited ap-
o CONSENSUS The goal is for all peers in the system t@roach. To aid this process, we discuss below a list of con-
come to a uniform agreement over time; that is to s&yderations for designing a peer-to-peer preservation system.
that ast — oo, we have that'i,j : p;(t) = p;(t). In There may be other useful considerations, but we've found
essence, each peer always believes that the version oftthe list to be particularly useful.
AU it has may be questionable and is willing to use the Trust in the source of the AUf the original source of the
aggregate opinion of the community to influence its owAU is perfectly trusted to supply the right version of the AU

1. INTRODUCTION

2. FRAMEWORK FORDESIGN CONSIDERATIONS

always, consistently, to all the subscriber peers (i.e., peers thedount would involve the following two considerations:
will hold replicas of this AU), conservation might be a better . Tolerance for stealth-modificatiots it acceptable to the
preservation strategy. On the other hand, if the source supplies users of the preservation system for some peers being

the right version to some subscriber peers and a wrong ver- successfully attacked by a stealth-modification adversary,
sion to some others, consensus could help, as long as the sub-and possibly recovering eventually? i.e., Is it tolerable for
scribers with the right version outhnumber those with a wrong some of the peers to have an incorrect AU sometimes? If

version and are thus able to convince those with the wrong the answeris 'yes’, then both conservation and consensus

version to replace their archived documents. may be equally suitable approaches. But, if the system
Trust in the means of procuring the AU. peers in the has very low tolerance for stealth-modification attacks,

system use an unreliable means of obtaining the AUs to be conservation may be appropriate as it is less influenced

archived, then it is likely that only a fraction of the peers will by (and thus, less susceptible to) other peers. Consider

obtain the correct copy at the outset. This circumstance may the case in which there is substantial likelihood that ad-

provide an argument in favor of a consensus-based approach, versaries may have subverted peers, or if there is fear
since conservation alone will lead to preservation of invalid that adversarial peers form a large percentage of the over-
copies. all peer population. In this circumstance, consensus is a

Frequency of storage faults.If storage degradation is dangerous strategy because it may cause all of the well-
frequent because of the environment or particular storage behaved peers that have the right version to receive an in-
medium chosen, then, it could prove difficult to achieve con- valid version, and thus conservation may be appropriate.
sensus on an AU. This is because if a substantial portion of However, there is also a downside to using conservation
peers are in damaged state at any point of time, then a dead- in that once the adversary is somehow able to carry out a
lock situation could arise. The peers need to get a consensus stealth-modification attack successfully, the victim peer,
copy to recover from their damage, and on the other hand, by definition, believes that its copy is the right one and is
the peers need to first recover from their damage in order to thus prevented from being able to recover, even after the
achieve good consensus. Thus, the consensus approach mayadversary has stopped actively attacking it.
not be well-suited for systems with high frequencies of stor-« Tolerance for nuisance<an the users tolerate frequent
age faults. On the other hand, a conservation approach might nuisances? The frequency of possible nuisance attacks is
avoid this problem because all it requires to recover from a limited by the frequency of invoking peer participation.
damage is any one peer being able to respond with the AU Thus, if there is low tolerance to nuisance attacks, then
being conserved. a conservation approach may be preferable because eact

Frequency of human errorlf system operators are likely peer relies on other peers only when it suffers a damage.
to commit errors, for instance, while loading an AU to be
preserved or while manually recovering the AU from a dam-
age occurrence, conservation could be detrimental because the
system may end up preserving an incorrect AU, whereas con-
sensus could help recover the right AU from other peers. In this section, we consider LOCKSS, an example of a

Resource relavance to participantRelevance [10] is the preservation system following the consensus approach, and
likelihood that a “unit of service” within a problem (in ourdiscuss its design with respect to our framework.
case, an archival unit) is interesting to many participants.The LOCKSS system [7], [9] preserves online academic
When resource relevance is high, both consensus and conserrnals using a peer-to-peer auditing mechanism. The sys-
vation could benefit from the relevance and would be equathm provides a preservation tool for libraries, whose budgets
suitable. However, when the resource relevance is low, lfer preservation are typically quite small [1]. Each (library)
cause cooperation would require artificial or exrinsic incepeer crawls the websites of publishers who have agreed to
tives to make the peer-to-peer solution viable, conservatibave their content preserved and downloads copies of pub-
would be better suited as it would require less frequent intdished material (e.g. academic journals) to which the library
actions (specifically, only during recovery from damage) amd question has subscribed. The cached information is then
smaller number of peers participating as compared to consased to satisfy requests from the library’s users when the pub-
sus. lisher’s website is unavailable.

Presence of adversarieBreservation systems may be sub- Web crawling is an unreliable process, making it diffi-
ject to various attacks from adversaries. We focus on twalt for peers to determine without manual inspection of the
kinds of attacks that exploit peer interactions in the systesrawled material whether complete and correct replicas of
stealth-modification attackndnuisance attackIn a stealth- the AUs of interest have been downloaded. Peers therefore
modification attack, the adversary’s goal is to modify the dateeed some automated way to determine if their copy is cor-
being preserved by a victim peer, but without being detectedct. LOCKSS uses consensus for this purpose. Peers perform
In a nuisance attack, the adversary’s goal is to create nuisasampled-auditing of their local copies to ensure that it agrees
for a victim peer, for instance by raising intrusion detectiowith the consensus of peers.
alarms that may require human operator intervention. TheThe LOCKSS design is based on the following characteris-
design of a preservation system that takes these attacks titt® and/or assumptions in our design framework:

3. LOCKSS - AN EXAMPLE OF THE CONSENSUS
APPROACH

Trust in the source of the AU and trust in the means ebn why the system cannot tolerate frequent nuisance attacks.
procuring the AU low, as long as a relatively small portionTherefore, the designers aim for nuisance attacks being only
of the overall peer population initially acquires an incorredfrequently possible.

AU either from the source or through the procurement meansAt the conclusion of a poll, the poller updates its refer-

Frequency of storage fault@xtremely low (assumed to beence list as follows. First, it removes those peers that voted

once in 200 years on an average) in the poll so that the next poll is based on a different sam-
Frequency of human erroican be high ple of peers. Second, the poller replenishes its reference list
Resource relevance to participantsigh, as libraries often by addingnominated peersind peers from the friends list.

subscribe to the same AU'’s from the publishers. Nominated peers, anomineesare peers that are introduced

Presence of adversariesat most one-third to 40% of theby the voters when the voters are first invited to participate in
peer population could be adversarial; the adversary is assuntglpoll. Nominees are used solely for discovery purposes so
to have unlimited computation power and unlimited identihat the poller can replenish its reference list. Nominees vote

ties. on the AU, but their votes are not considered in determining
« Tolerance for stealth-modification: medium the outcome of the poll. Instead, their votes are used to im-
« Tolerance for nuisances: low plement admission control into the reference list. Nominees

Looking at these characteristics and assumptions, and cafose votes agree with the poll outcome are added to the ref-
sidering the suitability of the approaches described in our dgence list.
sign framework, we can clearly see why the system designerd he bias of friends to nominees added is caltadrn The
have chosen the consensus approach. We descibe belovggigents of the reference list determine the outcome of future
design of the consensus protocol of LOCKSS, and discuss pg#ls. Adding more friends to the reference list than nominees
factors relevant to our framework on the way. makes the poller vulnerable to targeted attacks aimed at its
Each peer maintains two listsfends listand areference friends. Adding more nominees than friends to the reference
list. The reference list is a list of peers that the peer in questilist increases the potential for Sybil attacks [5].
has recently discovered in the process of participating in theUsing a combination of defense techniques such as rate-
LOCKSS system. The friends list is a list of peefisepndg limitation, effort-balancing, reference list refreshes and churn,
that the peer knows externally and with whom it has an ouwtmong others, the LOCKSS protocol achieves strong, but im-
of-band relationship before entering the system. When a pperfect, defense against a stealth-modification adversary. Ex-
joins the system, his reference lists starts out containing peyimental results show that the probability that, at any point
peers on his friends list. in time, the user at a peer would access a bad AU was in-
Periodically, at a rate faster than the rate of natural bit degrsieased by just 3.5%. However, it was also observed that
dation, a peer (thpoller conducts ampinion pollon an AU. around one-third of the loyal (i.e., non-adversarial) peers end
The peer takes a random sample of peers gsaumfrom up being attacked by a stealth-modification adversary who
its reference list and invites the chosen peersaiersinto a starts with an initial subversion of 40% of the overall peer
poll. The voters vote on the AU by sending hashes of thgipulation. Although the LOCKSS authors have reported that
individual copies of the AU to the peer initiating the poll. Theuccessful nuisance attacks have been observed to be seldorr
poller compares the votes it receives with its local copy. If dhey have not looked into what exactly happens when an alarm
overwhelming majority of the hashes received agrees with tisgraised at a peer (i.e., to what extent the adversary is rooted
poller’s hash, then the poller concludes that its copy is goaajt), and so we cannot analyze the real impact of nuisance
(i.e., it agrees with the consensus) and it resets a refresh tiigacks at this time.
to determine the next time to check this AU. If an overwhelm-
ing majority of hashes disagree, then the peer fetchiepair
by obtaining a copy of the AU from one of the disagreeing
peers and re-evaluating the votes it received. That is, the peer
alters its copy of the AU so that it agrees with the consen-The key notion of the conservation approach is that each
sus. If there is neither landslide agreement nor landslide diser, being fully confident that the version of the AU it stores
agreement, then the poll is deemedonclusiveand the poller is the right version, attempts to conserve its own version. To
raises an alarm. do so, the peer ignores what the version may look like at other
Because natural storage degradation is assumed to be apegrs, except when it suffers a “bit-rot”, i.e., a storage failure
atively infrequent occurrence, it is unlikely that many pee® some other event that results in its AU being damaged, at
will simultaneously be experiencing degradation. If an incom¢hich point it looks to other peers for recovery.
clusive poll results, it is an indication that an attack might be Given just the conservation notion, one might consider a
in progress. LOCKSS uses alarms as a way of performing Bimple solution for implementing conservation such as storing
trusion detection, so that when an attack is suspected, humiesAU, along with a signed hash of the AU remotely on other
are called upon to examine, heal, and restart the system. Tgesrs, and relying on this information while recovering from
requirement of humans being expected to examine, heal, arult-rot. This solution may be perfectly acceptable in peer-to-
restart the system every time an alarm is raised, which copleer backup applications. However, in a LOCKSS-like appli-
happen on every poll in the theoretically worst case, is the re&ation that would want to exploit the high resource relevance

4. SERRA - AN EXAMPLE OF THE CONSERVATION
APPROACH

existing in the system (to reduce unnecessary storage oymtler checks to see if any of the peers that are in the minority
head) and avoid long-term secrets (which may be unreasagree with each other. If@inority thresholchumber of peers
able for long-term preservation on the order of decades), tagree with each other, the poller raises an alarm to notify its
simple solution may not be suitable. local operators. Otherwise, the poller repairs using the version

We propose Sierra as a conservation-based alternative todhthe AU stored by the majority. A minority alarm indicates
LOCKSS protocol. Sierra shares some features with LOCK®&t either the majority or the minority is potentially adver-
in that it exploits resource relevance and does not depeasatial. When this alarm is raised, the operator is expected to
on long-term secrets. It also borrows some techniques fraxamine and choose the right one among the different con-
LOCKSS such as calling opinion polls using a sample of thending versions of the AU and then, the peers who supplied
peer population. However, Sierra’s primary goal departs futie incorrect versions will be blacklisted. Note that the larger
damentally from that of LOCKSS. While Sierra makes useis, the more likely a stealth-modification attack will be de-
of opinion polls (which have a consensus flavor), it does nigcted because the higher the chance that the poller will find,
blindly rely on the results of the polls. We thus refer to Sieriia a subsequent poll, a minority threshold number of peers that
as using a@amed-consensugpproach towards achieving theagree with each other.

conservation goal. In Sierra, voters only vote if they are in the self-sufficient
Following are the characteristics and/or assumptions we ssate (i.e., their stored AU and hash match) and decline the
that are relevant to our design framework: poll invitation otherwise.
Trust in the source of the AU and trust in the means of
procuring the AU hight 4.1 Analysis
Frequency of storage faulttow
Frequency of human errotow The Sierra protocol uses the basic underlying features of the
Resource relevance to participantsigh LOCKSS protocol for calling polls and managing the peer-to-

Presence of adversariesip to 60% of the peer populationPeer network, and thus to analyze its effects theoretically, we
could be adversarial; the adversary is assumed to have unf&##'t by examining existing theoretical properties of LOCKSS.

ited computation power and unlimited identities. Due to lack of space, we omit the details of the LOCKSS anal-
« Tolerance for stealth-modification: zero-tolerance ~ YSis [8] here. L o
. Tolerance for nuisances: low Attaining a presence in a victim peer’s reference list is the

ly means through the protocol by which an adversary can
nch a stealth-modification or a nuisance attack. We call the
ngth of adversarial presence, i.e., the proportion of refer-
1ce list peers that are adversarial, the adverséogthold
e only way for an adversary to attain higher foothold in a
gﬁ_r’s reference listis tark, i.e., toactloyal (or non-malign)
y voting using the correct version of the AU and nominating

Since we prioritize allowing higher presence of adversarij{'
and yet having zero-tolerance for stealth-modification atta
and low tolerance for nuisance attacks, we are forced to m
the stronger assumption of high trust in the source and p
curement means for the AU.

Since a conservation-based system assumes complete
fidence in the local AU, a bit-rot occurrence is the oftigne- . - .))
of-need” when a peer might have to rely on the other peelIté minions for entrance mtq the poller’s reference list.
to recover its AU. During the remaining time, the peer would Consider an adversary in LOC.KSS. that lurks. _We can
be“self-sufficient” in terms of preserving the AU. AIongsidemOdeI the expected number of malign (i.e., adversarial) peers,

each stored AU, a peer stores a hash of that AU and perigdit?’ Ina on_al peer's refere_nce list at time given a uni-
cally checks the AU against the hash to determine if it is se prm distribution of adversaries throughout the population, as
sufficient or in its time of need a function of time and a set of system parameters (See Fig-

In addition, we introduce a host of defense techniques Y& 1) [8]:
help a peerconservets AU. Peers call polls periodically as
in LOCKSS. If the stored AU and hash match, then the poller X Q+2X CTM,
ignores the result of the poll. However, the poller updates it8Zr@+1) = — 75 Mp + (1 - T) M+ —5— (1)
reference list as in the LOCKSS protocol with the following
change. Any voters whose votes disagree with the poller's AUwhere X, the expected number of nominees in steady-state
are removed from the reference list and abacklistedfrom equilibrium, is given by:
providing votes to this poller in the future.
If the AU and local hash do not match when the poller calls 1-C?
its next poll, it enters a “time-of-need” state and remains in X=Q+T (1+C 1) (2)
this state for the next polls, wheren is a system-defined pa-
rameter. During (and only during) a time-of-need poll, the However, because Sierra introduces blacklisting as a means
by which a peer may eradicate those who vote with invalid
'Note that if we were to use our protocol in a LOCKSS-like domaleop|es from |ts reference I|St, the recurrence equa‘“on for

where there may be unreliable procurement means, we can useia ¢fybr _
the consensus and conservation approaches, so that during thphdisst, Sierra is somewhat different. The only opportunity for an ad

consensus is used to obtain a stabilized consensus copy, and theceafter VEISary .tO have its set _Of malign pe_%h -y Pmk) VOte Wit_h
servation is used to preserve the stable copy on a long-term basis an invalid copy and still increase its expected foothold in the

symbol default description fect knowledge about peers suffering bit-rots and will attack
C 0.1 churn rate (ratio) or create a nuisance only when a peer is in time-of-need.
M, 1000 initial number of malign peers 4.1.1 Effectiveness against Stealth Modification Attacks:
Q 100 quorum # of voters needed per poll We first consider the question of what conditions can actu-
P 10000 total population ally lead to an adversary being able to carry out a stealth-
T 600 reference list size modification attack successfully (i.e., without being detected).
Int 3 months mean inter-poll interval An attack is possible only if:

« The adversary has somehow achieved very high (close to
100%) foothold in the victim’s reference list — because it
would otherwise be detected through the minority thresh-

reference lists of some target pegoccurs wherp, suffers a old alarm within then polls called during the time-of-

bit-rot and enters its time-of-need state. need.

Suppose that is the threshold for raising an alarm in the « More importantly, the adversary is able to sustain that
event of minority agreement. Given that a stealth-modification foothold for a sufficient number of consecutive polls —
adversary seeks to win a poll and avoid detection, the malign specifically, during the time-of-need polls.
peers must vote with the invalid copy of the AU only if there « The adversary is able to somehow magically attack ex-
exist at least) — p malign peers in a given poll called by actly when a damage has just occurred at the victim, i.e.,
pt, and further if the poll happens to be a time-of-need poll. should have perfect knowledge of the victim's damage
Otherwise, if the adversary attacks with its bad copy, it ends occurrences.
up losing all of its hard-earned foothold due to blacklisting. We now use the mathematical model discussed earlier to
Therefore, the optimal strategy for the stealth-modificatigshow that the adversary is not able to carry out stealth-
adversary in the case where there are less than ;1 ma- modification attacks successfully. Recall that the the optimal
lign peers in a poll is to lurk, so that it can try to increasgdversary strategy for stealth-modification is lurking continu-
its foothold further. Thus, the recurrence equation does misly until it attains enough foothold. We find that the adver-
change for the stealth-modification adversary if we assumesty is unable to lurk and attain footholds high enough (i.e.,
optimal adversary strategy (and therefore no blacklisting). enough to ensure at leagt — 1 poll invitations) to be able

If an adversary wants to simply create a nuisance that rais@garry out successful attacks. Figure 2 shows the result of
an alarm, then at leagt malign peers must vote with a nonusing equations 3 and 4 with= 0 to obtain the equilibrium
majority copy of the AU. Since the act of creating a nuisangeothold value (which is the maximum expected number of
does not benefit from having more tharpeers vote with the malicious peers on the reference list of a given loyal peer) for
invalid copy, it is in the best interest of the adversary to havfferent initial subversion values. As we can see from this
only uu peers,(pm1, ..., pmy) Perform this task. The adver-graph, even for initial subversions as high as 60%, the equi-
sary would now lose some foothold due to blacklisting whefibrium foothold never reaches 80%, which is the foothold re-
ever it creates a nuisance, and therefore, the recurrence equired to ensure at leagt — . poll invitations.
tion changes. Next, we introduce three other variables:
the mean time between failures (in terms of number of polls) o x x x x x
for the particular storage system,the likelihood that an ad-
versary will choose to create a nuisance when it can,/&nd s
the likelihood that an adversary will create a nuisance even
when a peer isotin time-of-need K represents the extentto £
which the adversary has knowledge of when a bit-rot occursg
for a particular loyal peer. If the adversary has perfect knowl-
edge (through some covert channel or out-of-band means),
then K = 0, but we believe that in most realistic casés,
would be closer to 1. Whenever the adversary tries to create a
nuisance for a given peeg by supplyingu malicious votes, ° 10 D ety " 0 60
py Will evict i adversarial peers from its reference list. Thus,
our new recurrence is represented by the following equatiog'@. 2. EQUILIBRIUM FOOTHOLD ACHIEVED WITH VARYING INITIAL

SUBVERSION. Presuming MTBH = 10 years, nuisance probability =
0, and minority thresholgs = 20.

Fig. 1. Parameters for Sierra analysis.

ol

40

Fo

20

initial —e—
equllllbnum —

X 2X T M,
Mgy = g+ (1 - 0, T (g
Note that we have assumed that the adversary has perfect
knowledge of the victim’s damage occurrences. If the adver-
M, = M/, — dp(l + K(F —1)) (4) sary has no out-of-band means to acquire this knowledge, it
F is close to impossible for the adversary to be able to lurk for

Since we are interested in powerful adversaries, we assuimeentire period that the victim peer is healthy (to avoid being
for the rest of our analysis that an adversary somehow has gacklisted) and then attack exactly when it suffers a damage.

4.1.2 Effectiveness against Nuisance AttackBirst, we Finally, Figure 4 shows the effect of varying the minority
note that in Sierra, the maximum frequency at which an aifreshold. We see that with lower minority thresholds, the
versary can create nuisance is limited to once every bit-amversary incurs lesser penalty and therefore, the adversary
occurrence instead of once every poll as in LOCKSS. Nekias less of an incentive not to create a nuisance. On the other
we observe that creating a nuisance comes with an associ&izad, we know intuitively that increasing the threshold, while
penalty: peers voting with an invalid copy are blacklisted bgontributing to a better defense against nuisance attacks, leads
the operator upon being notified by the alarm, and they cant@inore opportunities for stealth modification attacks.
return to the reference list. We want to show that the penalty
associated by blacklisting creates some disincentive for nui- 5. CONCLUSIONS

sance attaCkS. For the fOIIOWing anaIySiS, we ConSider adverpreservation is not a Straighforward problem. Peer-to_peer
saries having an initial subversion of 10% of the peer populsystems aimed at providing a preservation solution face a
tion. First, this subversion ratio is enough for the adversary g@mbper of conflicting design considerations that force design-
be able to carry out nuisance attacks. Second, while an adyg& to make difficult choices. We have presented a framework
sary with a higher subversion ratio could very well carry oggr considering the tradeoffs involved in designing such a sys-
nuisance attacks, it does not lose much foothold because it g&y. \We have also discussed two example systems with re-
quickly make up for the loss it suffers (due to blacklisting) bypect to this framework, LOCKSS and Sierra, that embody
nominating its minions. the two basic approaches to preservation: consensus and con
servation, respectively. We observe that LOCKSS allows as-
ul 1 sumptions of distrustful source and procurement means for
»l | the AU, while achieving moderately strong defense against
- stealth-modification and nuisance attacks. On the other hand,
Sierra achieves much stronger defense against both attacks.
but at the expense of making assumptions of high trust in the
source and procurement means for the AU.

20

18 r

16

Equlibrium foothold (%)

14

2} 1 6. ACKNOWLEDGMENTS

or ﬁ?EE‘E%m = 1 We would like to thank the following people for their very

sl — - - L helpful feedback and suggestions: Mary Baker, T. J. Giuli,
Probabilty of creating nuisance Rachel Greenstadt, Petros Maniatis, Radhika Nagpal, Bryan

Parno, Vicky Reich, and David S. H. Rosenthal.
Fig. 3. VARYING NUISANCE PROBABILITY. Presuming 10% initial sub-

version and minority threshold = 20. REFERENCES

[1] ARL — Association of Research Libraries. ARL Statistics
Figure 3 shows what happens when we vary the probability’ 2000-01. http://ww. arl . org/ stats/ arl stat/01lpub/
in which an adversary creates a nuisance. Observe that even ifi ntro. ht m , 2001. _
an adversary has complete knowledge of when a given peePé T. Burkard. Herodotus: A Peer-to-Peer Web Archival Systktas-

: . . . : ter's thesis, MIT, Jun 2002.
AU is damaged, it may still have substantial incentive not t@s) 5" £ cooper and H. Garcia-Molina. Peer-to-peer data pretienva

create a nuisance too frequently, particularly if the MTBF is through storage auctionslEEE Transactions on Parallel and Dis-

sufficiently short that the adversary does not have time to re- tributed Systems, to appear

store its representation on the peer’s reference list betweth Landon P. Cox and Brian D. Noble. Samsara: Honor Among Tisieve

successive failures in Peer-.to-Peer Storage. Ihroceedlr]gs. of the Nineteenth ACM
) Symposium on Operating Systems Principteges 120-132, Bolton

Landing, NY, USA, October 2003.

T T [5] J. Douceur. The Sybil Attack. last Intl. Workshop on Peer-to-Peer

Systems2002.

. [6] HiveCache, Inc. Distributed disk-based backups. Available atp:

/I ww. hi vecache. cont .

° [7] P.Maniatis, M. Roussopoulos, TJ Giuli, D. S. H. Rosenthal, M. Baker

and Y. Muliadi. Preserving Peer Replicas By Rate-Limited Sampled

Voting. In SOSR2003.

1 [8] B. Parno and M. Roussopoulos. Predicting Adversary Infiltration in

the LOCKSS System. Technical Report TR-28-04, Harvard Univer-

A sity, October 2004.

25 T T T T T T

20

15 -

10

Equlibrium foothold (%)

MTBE 4 yeare —— [9] D. S. H. Rosenthal, M. Roussopoulos, P. Maniatis, and M. Baker.
L 1 1 1 1 1 MIBF & years —— Economic Measures to Resist Attacks on a Peer-to-Peer Network.
0 5 10 15 20 25 30 35 40 In Workshop on Economics of Peer-to-Peer SystéBeskeley, CA,
Minority threshold USA, June 2003
[10] M. Roussopoulos, TJ Giuli, M. Baker, P. Maniatis, D. S. H. Rosainth
Fig. 4. VARYING MINORITY THRESHOLD. Presuming 10% initial sub- and J. Mogul. 2 P2P or Not 2 P2P?IRTPS 2004.

version and nuisance probability = 1. Note that the x-axis shows the[11] D. Wallach. A Survey of Peer-to-Peer Security Issuednth Symp.
minority threshold as an absolute number of peers and the quorum is 100. on Software Securify2002.

