
1Conservation vs. Consensus in
Peer-to-Peer Preservation Systems

Prashanth P. Bungale, Geoffrey Goodell, Mema Roussopoulos
Division of Engineering and Applied Sciences, Harvard University

{prash, goodell, mema}@eecs.harvard.edu

Abstract—
The problem of digital preservation is widely acknowledged,

but the underlying assumptions implicit to the design of systems
that address this problem have not been analyzed explicitly. We
identify two basic approaches to address the problem of digital
preservation using peer-to-peer systems:conservation and con-
sensus. We highlight the design tradeoffs involved in using the
two general approaches, and we provide a framework for an-
alyzing the characteristics of peer-to-peer preservationsystems
in general. In addition, we propose a novel conservation-based
protocol for achieving preservation and we analyze its effective-
ness with respect to our framework.

1. INTRODUCTION

Recently, a number of peer-to-peer approaches have been
proposed to address the problem ofpreservation(e.g., [4],
[7], [11], [2], [3], [6]). In their attempt to preserve some data
so that it is available in the future, these systems face a num-
ber of challenges including dealing with natural degradation in
storage media, catastrophic events or human errors, attacks by
adversaries attemtping to change the data preserved, as well
as providing incentives to other peers to help in the preser-
vation task. These systems differ in their approaches and the
systems’ designers characterize their approaches in different
ways: archiving, backup, digital preservation. But these peer-
to-peer systems share a basic premise: that each peer is inter-
ested in preserving one or morearchival units(AUs) and uses
the aid and resources of other peers to achieve its goal.

In this paper we provide a framework for analyzing the
characteristics and highlighting the design tradeoffs of peer-
to-peer preservation approaches. Suppose that our preserva-
tion system involves each AU of interest being replicated on
a subset of the peer population. Consider a particular archival
unit being replicated on a subset consisting ofn peers, denoted
(p1, p2, ..., pn). We usepi(t) to denote the copy of the archival
unit held by peerpi at timet. To simplify the scenario some-
what, presume that all peers enter the system at timet0. We
assert that there are two basic approaches to providing preser-
vation:

• CONSENSUS. The goal is for all peers in the system to
come to a uniform agreement over time; that is to say
that ast → ∞, we have that∀i, j : pi(t) = pj(t). In
essence, each peer always believes that the version of the
AU it has may be questionable and is willing to use the
aggregate opinion of the community to influence its own

copy, even if that sometimes involves replacing the cur-
rent copy with a new one.

• CONSERVATION. The goal is for each peer to retain in-
definitely the exact copy of the AU that it holds initially;
that is to say that ast → ∞, we have that∀i, t : pi(t) =
pi(t0). In essence, each peer believes that the version of
the AU it starts with is the “right” version, and it always
attempts to preserve this copy, even if other peers dis-
agree. When it suffers a damage to its AU, it seeks the
help of other peers to recover this right version.

There is a fundamental trade-off between these two ap-
proaches. If a peer happens to have a wrong version, con-
serving the data as it is is detrimental to preservation, whereas
consensus helps preserve the right version if the other peers
happen to supply the right version as the consensus version.
On the other hand, if a peer happens to have the right version,
conserving the data as it is helps preserve the right version,
whereas consensus can potentially cause it to get infected with
a wrong version (if the other peers happen to supply a wrong
version to it as the consensus version).

The rest of the paper proceeds as follows. In Section 2,
we present our framework for analyzing the design tradeoffs
peer-to-peer preservation systems must make and we describe
the factors that affect the success of such a system. In Sec-
tion 3, we describe an example of a peer-to-peer system that
embodies the consensus approach and discuss where it falls
within our design framework. This is the well-documented
LOCKSS peer-to-peer digital preservation system [7], [9]. In
Section 4, we describe and analyze Sierra, a new conservation-
based peer-to-peer approach to the digital preservation prob-
lem, that is inspired by the LOCKSS protocol, but that departs
fundamentally from the consensus-based LOCKSS approach.
In Section 5 we conclude.

2. FRAMEWORK FORDESIGN CONSIDERATIONS

The design choice between conservation and consensus is
not straightforward, but involves balancing and prioritizing
various conflicting goals and choosing the best suited ap-
proach. To aid this process, we discuss below a list of con-
siderations for designing a peer-to-peer preservation system.
There may be other useful considerations, but we’ve found
this list to be particularly useful.

Trust in the source of the AU.If the original source of the
AU is perfectly trusted to supply the right version of the AU



always, consistently, to all the subscriber peers (i.e., peers that
will hold replicas of this AU), conservation might be a better
preservation strategy. On the other hand, if the source supplies
the right version to some subscriber peers and a wrong ver-
sion to some others, consensus could help, as long as the sub-
scribers with the right version outnumber those with a wrong
version and are thus able to convince those with the wrong
version to replace their archived documents.

Trust in the means of procuring the AU.If peers in the
system use an unreliable means of obtaining the AUs to be
archived, then it is likely that only a fraction of the peers will
obtain the correct copy at the outset. This circumstance may
provide an argument in favor of a consensus-based approach,
since conservation alone will lead to preservation of invalid
copies.

Frequency of storage faults. If storage degradation is
frequent because of the environment or particular storage
medium chosen, then, it could prove difficult to achieve con-
sensus on an AU. This is because if a substantial portion of
peers are in damaged state at any point of time, then a dead-
lock situation could arise. The peers need to get a consensus
copy to recover from their damage, and on the other hand,
the peers need to first recover from their damage in order to
achieve good consensus. Thus, the consensus approach may
not be well-suited for systems with high frequencies of stor-
age faults. On the other hand, a conservation approach might
avoid this problem because all it requires to recover from a
damage is any one peer being able to respond with the AU
being conserved.

Frequency of human error.If system operators are likely
to commit errors, for instance, while loading an AU to be
preserved or while manually recovering the AU from a dam-
age occurrence, conservation could be detrimental because the
system may end up preserving an incorrect AU, whereas con-
sensus could help recover the right AU from other peers.

Resource relavance to participants: Relevance [10] is the
likelihood that a “unit of service” within a problem (in our
case, an archival unit) is interesting to many participants.
When resource relevance is high, both consensus and conser-
vation could benefit from the relevance and would be equally
suitable. However, when the resource relevance is low, be-
cause cooperation would require artificial or exrinsic incen-
tives to make the peer-to-peer solution viable, conservation
would be better suited as it would require less frequent inter-
actions (specifically, only during recovery from damage) and
smaller number of peers participating as compared to consen-
sus.

Presence of adversaries.Preservation systems may be sub-
ject to various attacks from adversaries. We focus on two
kinds of attacks that exploit peer interactions in the system:
stealth-modification attackandnuisance attack. In a stealth-
modification attack, the adversary’s goal is to modify the data
being preserved by a victim peer, but without being detected.
In a nuisance attack, the adversary’s goal is to create nuisance
for a victim peer, for instance by raising intrusion detection
alarms that may require human operator intervention. The
design of a preservation system that takes these attacks into

account would involve the following two considerations:
• Tolerance for stealth-modification: Is it acceptable to the

users of the preservation system for some peers being
successfully attacked by a stealth-modification adversary,
and possibly recovering eventually? i.e., Is it tolerable for
some of the peers to have an incorrect AU sometimes? If
the answer is ’yes’, then both conservation and consensus
may be equally suitable approaches. But, if the system
has very low tolerance for stealth-modification attacks,
conservation may be appropriate as it is less influenced
by (and thus, less susceptible to) other peers. Consider
the case in which there is substantial likelihood that ad-
versaries may have subverted peers, or if there is fear
that adversarial peers form a large percentage of the over-
all peer population. In this circumstance, consensus is a
dangerous strategy because it may cause all of the well-
behaved peers that have the right version to receive an in-
valid version, and thus conservation may be appropriate.
However, there is also a downside to using conservation
in that once the adversary is somehow able to carry out a
stealth-modification attack successfully, the victim peer,
by definition, believes that its copy is the right one and is
thus prevented from being able to recover, even after the
adversary has stopped actively attacking it.

• Tolerance for nuisances: Can the users tolerate frequent
nuisances? The frequency of possible nuisance attacks is
limited by the frequency of invoking peer participation.
Thus, if there is low tolerance to nuisance attacks, then
a conservation approach may be preferable because each
peer relies on other peers only when it suffers a damage.

3. LOCKSS - AN EXAMPLE OF THE CONSENSUS

APPROACH

In this section, we consider LOCKSS, an example of a
preservation system following the consensus approach, and
discuss its design with respect to our framework.

The LOCKSS system [7], [9] preserves online academic
journals using a peer-to-peer auditing mechanism. The sys-
tem provides a preservation tool for libraries, whose budgets
for preservation are typically quite small [1]. Each (library)
peer crawls the websites of publishers who have agreed to
have their content preserved and downloads copies of pub-
lished material (e.g. academic journals) to which the library
in question has subscribed. The cached information is then
used to satisfy requests from the library’s users when the pub-
lisher’s website is unavailable.

Web crawling is an unreliable process, making it diffi-
cult for peers to determine without manual inspection of the
crawled material whether complete and correct replicas of
the AUs of interest have been downloaded. Peers therefore
need some automated way to determine if their copy is cor-
rect. LOCKSS uses consensus for this purpose. Peers perform
sampled-auditing of their local copies to ensure that it agrees
with the consensus of peers.

The LOCKSS design is based on the following characteris-
tics and/or assumptions in our design framework:



Trust in the source of the AU and trust in the means of
procuring the AU: low, as long as a relatively small portion
of the overall peer population initially acquires an incorrect
AU either from the source or through the procurement means.

Frequency of storage faults: extremely low (assumed to be
once in 200 years on an average)

Frequency of human error: can be high
Resource relevance to participants: high, as libraries often

subscribe to the same AU’s from the publishers.
Presence of adversaries: at most one-third to 40% of the

peer population could be adversarial; the adversary is assumed
to have unlimited computation power and unlimited identi-
ties.

• Tolerance for stealth-modification: medium
• Tolerance for nuisances: low
Looking at these characteristics and assumptions, and con-

sidering the suitability of the approaches described in our de-
sign framework, we can clearly see why the system designers
have chosen the consensus approach. We descibe below the
design of the consensus protocol of LOCKSS, and discuss the
factors relevant to our framework on the way.

Each peer maintains two lists: afriends listand areference
list. The reference list is a list of peers that the peer in question
has recently discovered in the process of participating in the
LOCKSS system. The friends list is a list of peers (friends)
that the peer knows externally and with whom it has an out-
of-band relationship before entering the system. When a peer
joins the system, his reference lists starts out containing the
peers on his friends list.

Periodically, at a rate faster than the rate of natural bit degra-
dation, a peer (thepoller conducts anopinion pollon an AU.
The peer takes a random sample of peers as aquorumfrom
its reference list and invites the chosen peers asvotersinto a
poll. The voters vote on the AU by sending hashes of their
individual copies of the AU to the peer initiating the poll. The
poller compares the votes it receives with its local copy. If an
overwhelming majority of the hashes received agrees with the
poller’s hash, then the poller concludes that its copy is good,
(i.e., it agrees with the consensus) and it resets a refresh timer
to determine the next time to check this AU. If an overwhelm-
ing majority of hashes disagree, then the peer fetches arepair
by obtaining a copy of the AU from one of the disagreeing
peers and re-evaluating the votes it received. That is, the peer
alters its copy of the AU so that it agrees with the consen-
sus. If there is neither landslide agreement nor landslide dis-
agreement, then the poll is deemedinconclusiveand the poller
raises an alarm.

Because natural storage degradation is assumed to be a rel-
atively infrequent occurrence, it is unlikely that many peers
will simultaneously be experiencing degradation. If an incon-
clusive poll results, it is an indication that an attack might be
in progress. LOCKSS uses alarms as a way of performing in-
trusion detection, so that when an attack is suspected, humans
are called upon to examine, heal, and restart the system. This
requirement of humans being expected to examine, heal, and
restart the system every time an alarm is raised, which could
happen on every poll in the theoretically worst case, is the rea-

son why the system cannot tolerate frequent nuisance attacks.
Therefore, the designers aim for nuisance attacks being only
infrequently possible.

At the conclusion of a poll, the poller updates its refer-
ence list as follows. First, it removes those peers that voted
in the poll so that the next poll is based on a different sam-
ple of peers. Second, the poller replenishes its reference list
by addingnominated peersand peers from the friends list.
Nominated peers, ornominees, are peers that are introduced
by the voters when the voters are first invited to participate in
the poll. Nominees are used solely for discovery purposes so
that the poller can replenish its reference list. Nominees vote
on the AU, but their votes are not considered in determining
the outcome of the poll. Instead, their votes are used to im-
plement admission control into the reference list. Nominees
whose votes agree with the poll outcome are added to the ref-
erence list.

The bias of friends to nominees added is calledchurn. The
contents of the reference list determine the outcome of future
polls. Adding more friends to the reference list than nominees
makes the poller vulnerable to targeted attacks aimed at its
friends. Adding more nominees than friends to the reference
list increases the potential for Sybil attacks [5].

Using a combination of defense techniques such as rate-
limitation, effort-balancing, reference list refreshes and churn,
among others, the LOCKSS protocol achieves strong, but im-
perfect, defense against a stealth-modification adversary. Ex-
perimental results show that the probability that, at any point
in time, the user at a peer would access a bad AU was in-
creased by just 3.5%. However, it was also observed that
around one-third of the loyal (i.e., non-adversarial) peers end
up being attacked by a stealth-modification adversary who
starts with an initial subversion of 40% of the overall peer
poulation. Although the LOCKSS authors have reported that
successful nuisance attacks have been observed to be seldom,
they have not looked into what exactly happens when an alarm
is raised at a peer (i.e., to what extent the adversary is rooted
out), and so we cannot analyze the real impact of nuisance
attacks at this time.

4. SIERRA - AN EXAMPLE OF THE CONSERVATION

APPROACH

The key notion of the conservation approach is that each
peer, being fully confident that the version of the AU it stores
is the right version, attempts to conserve its own version. To
do so, the peer ignores what the version may look like at other
peers, except when it suffers a “bit-rot”, i.e., a storage failure
or some other event that results in its AU being damaged, at
which point it looks to other peers for recovery.

Given just the conservation notion, one might consider a
simple solution for implementing conservation such as storing
the AU, along with a signed hash of the AU remotely on other
peers, and relying on this information while recovering from
a bit-rot. This solution may be perfectly acceptable in peer-to-
peer backup applications. However, in a LOCKSS-like appli-
cation that would want to exploit the high resource relevance



existing in the system (to reduce unnecessary storage over-
head) and avoid long-term secrets (which may be unreason-
able for long-term preservation on the order of decades), this
simple solution may not be suitable.

We propose Sierra as a conservation-based alternative to the
LOCKSS protocol. Sierra shares some features with LOCKSS
in that it exploits resource relevance and does not depend
on long-term secrets. It also borrows some techniques from
LOCKSS such as calling opinion polls using a sample of the
peer population. However, Sierra’s primary goal departs fun-
damentally from that of LOCKSS. While Sierra makes use
of opinion polls (which have a consensus flavor), it does not
blindly rely on the results of the polls. We thus refer to Sierra
as using atamed-consensusapproach towards achieving the
conservation goal.

Following are the characteristics and/or assumptions we use
that are relevant to our design framework:

Trust in the source of the AU and trust in the means of
procuring the AU: high1

Frequency of storage faults: low
Frequency of human error: low
Resource relevance to participants: high
Presence of adversaries: up to 60% of the peer population

could be adversarial; the adversary is assumed to have unlim-
ited computation power and unlimited identities.

• Tolerance for stealth-modification: zero-tolerance
• Tolerance for nuisances: low
Since we prioritize allowing higher presence of adversaries,

and yet having zero-tolerance for stealth-modification attacks
and low tolerance for nuisance attacks, we are forced to make
the stronger assumption of high trust in the source and pro-
curement means for the AU.

Since a conservation-based system assumes complete con-
fidence in the local AU, a bit-rot occurrence is the only“time-
of-need” when a peer might have to rely on the other peers
to recover its AU. During the remaining time, the peer would
be “self-sufficient” in terms of preserving the AU. Alongside
each stored AU, a peer stores a hash of that AU and periodi-
cally checks the AU against the hash to determine if it is self-
sufficient or in its time of need.

In addition, we introduce a host of defense techniques to
help a peerconserveits AU. Peers call polls periodically as
in LOCKSS. If the stored AU and hash match, then the poller
ignores the result of the poll. However, the poller updates its
reference list as in the LOCKSS protocol with the following
change. Any voters whose votes disagree with the poller’s AU
are removed from the reference list and alsoblacklistedfrom
providing votes to this poller in the future.

If the AU and local hash do not match when the poller calls
its next poll, it enters a “time-of-need” state and remains in
this state for the nextn polls, wheren is a system-defined pa-
rameter. During (and only during) a time-of-need poll, the

1Note that if we were to use our protocol in a LOCKSS-like domain
where there may be unreliable procurement means, we can use a hybrid of
the consensus and conservation approaches, so that during the firstphase,
consensus is used to obtain a stabilized consensus copy, and thereafter, con-
servation is used to preserve the stable copy on a long-term basis

poller checks to see if any of the peers that are in the minority
agree with each other. If aminority thresholdnumber of peers
agree with each other, the poller raises an alarm to notify its
local operators. Otherwise, the poller repairs using the version
of the AU stored by the majority. A minority alarm indicates
that either the majority or the minority is potentially adver-
sarial. When this alarm is raised, the operator is expected to
examine and choose the right one among the different con-
tending versions of the AU and then, the peers who supplied
the incorrect versions will be blacklisted. Note that the larger
n is, the more likely a stealth-modification attack will be de-
tected because the higher the chance that the poller will find,
in a subsequent poll, a minority threshold number of peers that
agree with each other.

In Sierra, voters only vote if they are in the self-sufficient
state (i.e., their stored AU and hash match) and decline the
poll invitation otherwise.

4.1 Analysis

The Sierra protocol uses the basic underlying features of the
LOCKSS protocol for calling polls and managing the peer-to-
peer network, and thus to analyze its effects theoretically, we
start by examining existing theoretical properties of LOCKSS.
Due to lack of space, we omit the details of the LOCKSS anal-
ysis [8] here.

Attaining a presence in a victim peer’s reference list is the
only means through the protocol by which an adversary can
launch a stealth-modification or a nuisance attack. We call the
strength of adversarial presence, i.e., the proportion of refer-
ence list peers that are adversarial, the adversary’sfoothold.
The only way for an adversary to attain higher foothold in a
peer’s reference list is tolurk, i.e., toact loyal (or non-malign)
by voting using the correct version of the AU and nominating
its minions for entrance into the poller’s reference list.

Consider an adversary in LOCKSS that lurks. We can
model the expected number of malign (i.e., adversarial) peers,
Mrt, in a loyal peer’s reference list at timet, given a uni-
form distribution of adversaries throughout the population, as
a function of time and a set of system parameters (See Fig-
ure 1) [8]:

Mr(t+1) = −
X

T 2
M2

rt +

(

1 −
Q + 2X

T

)

Mrt +
CTM0

P
(1)

whereX, the expected number of nominees in steady-state
equilibrium, is given by:

X = Q + T

(

1 − C2

1 + C
− 1

)

(2)

However, because Sierra introduces blacklisting as a means
by which a peer may eradicate those who vote with invalid
copies from its reference list, the recurrence equation for
Sierra is somewhat different. The only opportunity for an ad-
versary to have its set of malign peers(pm1, ..., pmk) vote with
an invalid copy and still increase its expected foothold in the



symbol default description
C 0.1 churn rate (ratio)
M0 1000 initial number of malign peers
Q 100 quorum # of voters needed per poll
P 10000 total population
T 600 reference list size

Int 3 months mean inter-poll interval

Fig. 1. Parameters for Sierra analysis.

reference lists of some target peerpt occurs whenpt suffers a
bit-rot and enters its time-of-need state.

Suppose thatµ is the threshold for raising an alarm in the
event of minority agreement. Given that a stealth-modification
adversary seeks to win a poll and avoid detection, the malign
peers must vote with the invalid copy of the AU only if there
exist at leastQ − µ malign peers in a given poll called by
pt, and further if the poll happens to be a time-of-need poll.
Otherwise, if the adversary attacks with its bad copy, it ends
up losing all of its hard-earned foothold due to blacklisting.
Therefore, the optimal strategy for the stealth-modification
adversary in the case where there are less thanQ − µ ma-
lign peers in a poll is to lurk, so that it can try to increase
its foothold further. Thus, the recurrence equation does not
change for the stealth-modification adversary if we assume an
optimal adversary strategy (and therefore no blacklisting).

If an adversary wants to simply create a nuisance that raises
an alarm, then at leastµ malign peers must vote with a non-
majority copy of the AU. Since the act of creating a nuisance
does not benefit from having more thanµ peers vote with the
invalid copy, it is in the best interest of the adversary to have
only µ peers,(pm1, ..., pmµ) perform this task. The adver-
sary would now lose some foothold due to blacklisting when-
ever it creates a nuisance, and therefore, the recurrence equa-
tion changes. Next, we introduce three other variables:F ,
the mean time between failures (in terms of number of polls)
for the particular storage system,d, the likelihood that an ad-
versary will choose to create a nuisance when it can, andK,
the likelihood that an adversary will create a nuisance even
when a peer isnot in time-of-need.K represents the extent to
which the adversary has knowledge of when a bit-rot occurs
for a particular loyal peer. If the adversary has perfect knowl-
edge (through some covert channel or out-of-band means),
thenK = 0, but we believe that in most realistic cases,K

would be closer to 1. Whenever the adversary tries to create a
nuisance for a given peerpt by supplyingµ malicious votes,
pt will evict µ adversarial peers from its reference list. Thus,
our new recurrence is represented by the following equations:

M ′

r(t+1) = −
X

T 2
M2

rt + (1 −
Q + 2X

T
)Mrt +

CTM0

P
(3)

Mrt = M ′

rt −
dµ(1 + K(F − 1))

F
(4)

Since we are interested in powerful adversaries, we assume
for the rest of our analysis that an adversary somehow has per-

fect knowledge about peers suffering bit-rots and will attack
or create a nuisance only when a peer is in time-of-need.

4.1.1 Effectiveness against Stealth Modification Attacks:
We first consider the question of what conditions can actu-
ally lead to an adversary being able to carry out a stealth-
modification attack successfully (i.e., without being detected).
An attack is possible only if:

• The adversary has somehow achieved very high (close to
100%) foothold in the victim’s reference list – because it
would otherwise be detected through the minority thresh-
old alarm within then polls called during the time-of-
need.

• More importantly, the adversary is able to sustain that
foothold for a sufficient number of consecutive polls –
specifically, during then time-of-need polls.

• The adversary is able to somehow magically attack ex-
actly when a damage has just occurred at the victim, i.e.,
should have perfect knowledge of the victim’s damage
occurrences.

We now use the mathematical model discussed earlier to
show that the adversary is not able to carry out stealth-
modification attacks successfully. Recall that the the optimal
adversary strategy for stealth-modification is lurking continu-
ously until it attains enough foothold. We find that the adver-
sary is unable to lurk and attain footholds high enough (i.e.,
enough to ensure at leastQ − µ poll invitations) to be able
to carry out successful attacks. Figure 2 shows the result of
using equations 3 and 4 withd = 0 to obtain the equilibrium
foothold value (which is the maximum expected number of
malicious peers on the reference list of a given loyal peer) for
different initial subversion values. As we can see from this
graph, even for initial subversions as high as 60%, the equi-
librium foothold never reaches 80%, which is the foothold re-
quired to ensure at leastQ − µ poll invitations.

 0

 20

 40

 60

 80

 100

 0  10  20  30  40  50  60

F
oo

th
ol

d 
(%

)

Initial subversion (%)

initial
equilibrium

Fig. 2. EQUILIBRIUM FOOTHOLD ACHIEVED WITH VARYING INITIAL

SUBVERSION. Presuming MTBFF = 10 years, nuisance probabilityd =

0, and minority thresholdµ = 20.

Note that we have assumed that the adversary has perfect
knowledge of the victim’s damage occurrences. If the adver-
sary has no out-of-band means to acquire this knowledge, it
is close to impossible for the adversary to be able to lurk for
the entire period that the victim peer is healthy (to avoid being
blacklisted) and then attack exactly when it suffers a damage.



4.1.2 Effectiveness against Nuisance Attacks:First, we
note that in Sierra, the maximum frequency at which an ad-
versary can create nuisance is limited to once every bit-rot
occurrence instead of once every poll as in LOCKSS. Next,
we observe that creating a nuisance comes with an associated
penalty: peers voting with an invalid copy are blacklisted by
the operator upon being notified by the alarm, and they cannot
return to the reference list. We want to show that the penalty
associated by blacklisting creates some disincentive for nui-
sance attacks. For the following analysis, we consider adver-
saries having an initial subversion of 10% of the peer popula-
tion. First, this subversion ratio is enough for the adversary to
be able to carry out nuisance attacks. Second, while an adver-
sary with a higher subversion ratio could very well carry out
nuisance attacks, it does not lose much foothold because it can
quickly make up for the loss it suffers (due to blacklisting) by
nominating its minions.

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0  0.2  0.4  0.6  0.8  1

E
qu

lib
riu

m
 fo

ot
ho

ld
 (

%
)

Probability of creating nuisance

MTBF 2 years
MTBF 4 years
MTBF 6 years
MTBF 8 years

Fig. 3. VARYING NUISANCE PROBABILITY. Presuming 10% initial sub-
version and minority thresholdµ = 20.

Figure 3 shows what happens when we vary the probability
in which an adversary creates a nuisance. Observe that even if
an adversary has complete knowledge of when a given peer’s
AU is damaged, it may still have substantial incentive not to
create a nuisance too frequently, particularly if the MTBF is
sufficiently short that the adversary does not have time to re-
store its representation on the peer’s reference list between
successive failures.

 0

 5

 10

 15

 20

 25

 0  5  10  15  20  25  30  35  40

E
qu

lib
riu

m
 fo

ot
ho

ld
 (

%
)

Minority threshold

MTBF 2 years
MTBF 4 years
MTBF 6 years
MTBF 8 years

Fig. 4. VARYING M INORITY THRESHOLD. Presuming 10% initial sub-
version and nuisance probabilityd = 1. Note that the x-axis shows the
minority threshold as an absolute number of peers and the quorum is 100.

Finally, Figure 4 shows the effect of varying the minority
threshold. We see that with lower minority thresholds, the
adversary incurs lesser penalty and therefore, the adversary
has less of an incentive not to create a nuisance. On the other
hand, we know intuitively that increasing the threshold, while
contributing to a better defense against nuisance attacks, leads
to more opportunities for stealth modification attacks.

5. CONCLUSIONS

Preservation is not a straighforward problem. Peer-to-peer
systems aimed at providing a preservation solution face a
number of conflicting design considerations that force design-
ers to make difficult choices. We have presented a framework
for considering the tradeoffs involved in designing such a sys-
tem. We have also discussed two example systems with re-
spect to this framework, LOCKSS and Sierra, that embody
the two basic approaches to preservation: consensus and con-
servation, respectively. We observe that LOCKSS allows as-
sumptions of distrustful source and procurement means for
the AU, while achieving moderately strong defense against
stealth-modification and nuisance attacks. On the other hand,
Sierra achieves much stronger defense against both attacks,
but at the expense of making assumptions of high trust in the
source and procurement means for the AU.

6. ACKNOWLEDGMENTS

We would like to thank the following people for their very
helpful feedback and suggestions: Mary Baker, T. J. Giuli,
Rachel Greenstadt, Petros Maniatis, Radhika Nagpal, Bryan
Parno, Vicky Reich, and David S. H. Rosenthal.

REFERENCES

[1] ARL – Association of Research Libraries. ARL Statistics
2000-01. http://www.arl.org/stats/arlstat/01pub/
intro.html, 2001.

[2] T. Burkard. Herodotus: A Peer-to-Peer Web Archival System,Mas-
ter’s thesis, MIT, Jun 2002.

[3] B. F. Cooper and H. Garcia-Molina. Peer-to-peer data preservation
through storage auctions.IEEE Transactions on Parallel and Dis-
tributed Systems, to appear.

[4] Landon P. Cox and Brian D. Noble. Samsara: Honor Among Thieves
in Peer-to-Peer Storage. InProceedings of the Nineteenth ACM
Symposium on Operating Systems Principles, pages 120–132, Bolton
Landing, NY, USA, October 2003.

[5] J. Douceur. The Sybil Attack. In1st Intl. Workshop on Peer-to-Peer
Systems, 2002.

[6] HiveCache, Inc. Distributed disk-based backups. Available athttp:
//www.hivecache.com/.

[7] P. Maniatis, M. Roussopoulos, TJ Giuli, D. S. H. Rosenthal, M. Baker,
and Y. Muliadi. Preserving Peer Replicas By Rate-Limited Sampled
Voting. In SOSP, 2003.

[8] B. Parno and M. Roussopoulos. Predicting Adversary Infiltration in
the LOCKSS System. Technical Report TR-28-04, Harvard Univer-
sity, October 2004.

[9] D. S. H. Rosenthal, M. Roussopoulos, P. Maniatis, and M. Baker.
Economic Measures to Resist Attacks on a Peer-to-Peer Network.
In Workshop on Economics of Peer-to-Peer Systems, Berkeley, CA,
USA, June 2003.

[10] M. Roussopoulos, TJ Giuli, M. Baker, P. Maniatis, D. S. H. Rosenthal,
and J. Mogul. 2 P2P or Not 2 P2P? InIPTPS, 2004.

[11] D. Wallach. A Survey of Peer-to-Peer Security Issues. InIntl. Symp.
on Software Security, 2002.


