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Abstract

Recent work has shown that intelligent neighbor selection
during construction can significantly enhance the perfor-
mance of peer-to-peer overlay networks. While its impact
on performance has been recognized, few have examined
the impact of neighbor selection on network resilience. In
this paper, we study the impact with a generalized cost
model for overlay construction that takes into considera-
tion different types of heterogeneity, such as node capac-
ity and network proximity. Our simulation results show
that the resulting performance improvement comes at the
cost of static resilience against targeted attacks.

1 Introduction

Recent research has shown structured peer-to-peer over-
lay networks to provide scalable and resilient abstractions
to large-scale applications [7, 9, 10, 13, 18]. They support
routing to endpoints or nodes inside a network requir-
ing only logarithmic routing state at each node. Nodes
in structured peer-to-peer networks choose their neigh-
bors based on optimization metrics. A recent study by
Gummadi et al. [5] shows that neighbor selection based
on network proximity significantly improves overall per-
formance.

However, such neighbor selection can lead to a unbal-
anced overlay structure. Figure 1 shows a snapshot of
the number of incoming edges (in-degree) and outgoing
edges (out-degree) of nodes in a Bamboo [9] overlay run-
ning on PlanetLab [4]. Because the overlay uses prox-
imity neighbor selection, some nodes in the system are
more popular (have higher in-degree) than others. The
impact of such a skewed degree distribution on the static
resilience of networks has yet to be quantified. The focus
of our study is to look at the impact of different neigh-
bor selections on static resilience and performance of net-
works.

To better model neighbor selection across these net-
works, we first present a generalized cost model. While
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Figure 1: Cumulative distribution of node degrees of a 205-
node Bamboo overlay running on PlanetLab. In-degree and out-
degree represent the number of incoming edges and the number
of outgoing edges of each overlay node. The graph does not in-
clude default links (i.e., leafset) used for failure tolerance. This
is a snapshot taken on August 26, 2004.

the heterogeneity of Internet hosts in bandwidth, inter-
node latency and availability are well measured [11],
most current protocols only consider network proximity
in neighbor selection. Thus we use different neighbor se-
lection models based on network proximity and node ca-
pacity. We study the impact they have on lookup latency
and static resilience by incorporating the neighbor selec-
tion algorithms into ring and tree geometries, and show
that the performance improvement from exploiting net-
work proximity or node capacity comes at a price of in-
creased vulnerability against targeted attacks.

The paper is organized as follows. We discuss related
work in Section 2 and describe details of the neighbor se-
lection model in Section 3. We then measure the impact
of different cost functions on both resilience and perfor-
mance in Section 4 and conclude in Section 5.



2 Related Work

The closest work to ours was done by Gummadi et al. [5].
The authors quantified the impact of routing geometry on
performance and static resilience. In contrast, we focus on
the impact of neighbor selection on these factors. Albert
et al. [1] show a clear correlation between the scale-free
nature of networks and resilience to attacks and failures.

Several research efforts propose optimizing overlay
construction of structured overlays using the network
proximity metric [2, 8, 14, 16, 18], but generally ignore
other factors such as CPU load, storage and bandwidth
capacity. Brocade [17] proposes the use of supernodes
for more efficient routing, but requires static selection of
supernodes.

Other work [6] proposes the use of multiple “virtual
servers” for load balancing among nodes of varying re-
source capacity, but does not consider network proxim-
ity for routing performance. Gia [3] performs continuous
topology adaptation on an unstructured overlay such that
nodes participate with network degree matching their re-
source capacity, without considering network proximity.

3 Structured Overlay Construction

In the construction of structured peer-to-peer networks,
each node chooses neighbors that meet logical identifier
constraints (e.g., prefix matching or identifier range), and
builds directional links to them. These constraints are
flexible such that a number of nodes are possible neigh-
bors for each routing table entry. Intelligent selection of
neighbors from the set of possible neighbor nodes signif-
icantly impacts the overlay’s performance, resilience, and
load balancing properties.

The neighbor selection problem can be reduced to a
generalized cost minimization problem. We present here
a generalized cost model that captures general node and
link characteristics during neighbor selection. Ideally, op-
timizing neighbor selection for node � means minimizing
the sum of the cost from � to all other nodes. The cost
from � to � consists of two factors: cost incurred by inter-
mediate overlay nodes (node cost: ��� ) and cost incurred
by overlay network links (edge cost: ��� ). Let � be the
network size. The cost of node � ( �
	 ) is:
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where ?A@!�CB%�ED is the traffic from � to � , �GFH@!��BI�ED is the cost
of the path from � to � , JK@<�CB%�ED is the path (a set of edges)
from � to � , LM@!��BI�ED is the set of intermediate overlay nodes
in the path JK@<�CB%�ED (it does not include � and � ), N is the
edge in the path JK@<�CBI�(D , O is the node in LP@<�CB%�ED , � � @!O0D
is the cost of node O , and ���.@!N#D is the cost of edge N . If?A@<�CBI�(D =0, there is no incentive for the node to optimize

Model Cost ( �Q	 )
Random None
Dist RTSVUW%XZY �>�#@!�CB'O W D
Cap R S UW%XZY � � @<O W D
CapDist R S UW%XZY � � � @<O W D0[��>�.@<�CB3O W D �

Table 1: Cost functions studied. $ * ���%" represents the processing
delay in node � . This is a decreasing function of capacity of node� . $ 8 �����\47]'" represents the direct overlay link delay between node� and node 4 ] .

the path from � to � . In this model, �>� captures the het-
erogeneity in node capacity, which is a function of band-
width, computation power, disk access time, and so on. � �
captures network proximity.

For structured networks such as Chord, Pastry, and
Tapestry, the cost function is defined as:

�
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U
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where a is the neighbor index, O W is the neighbor indexed
by a , � W is the number of neighbors, b W is the set of desti-
nations routed through the neighbor O W , �A�c@!�\D is the node
cost value of � , � � @%d�B3e%D is the edge cost between two nodesd and e , and � � @)N#D is the edge cost of N .

Depending on the optimization goal, we can choose dif-
ferent metrics for � � and ��� , including latency, through-
put, reliability, availability, monetary cost, or any com-
bination thereof. For example, choosing high capacity
nodes as neighbors can decrease lookup latency and in-
crease the overall lookup processing capacity of the sys-
tem. On the other hand, using availability as a metric cre-
ates a more stable network.

Note that our idealized cost function assumes full
knowledge of the network components, and is therefore
not feasible in practice. Since most peer-to-peer proto-
cols focus on optimizing neighbor tables locally, we will
focus on the application of our cost function to the cost
of the first overlay hop. Therefore, we focus on neighbor
selections that consider the first hop and optimize latency
under uniform traffic ( ?A@<�CB%�EDgfih�B�j���BI� ).

Table 1 shows the four neighbor selection cost func-
tions. Random chooses neighbors randomly. Dist chooses
neighbors physically closest in the network to adapt to the
underlying network topology. Currently, Bamboo, Pastry,
and Tapestry use this mechanism. Cap chooses neighbors
that have the smallest processing delay. CapDist chooses
neighbors that gives the smallest combined latency, which
is the sum of the node processing delay and the overlay
link delay.
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Figure 2: Average lookup latency for uniform processing delay
distribution
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Figure 3: Average lookup latency for bimodal processing delay
distribution.

4 Simulation Results

In this section, we present simulation results that quan-
tify the performance benefits of using intelligent neighbor
selection algorithms. We also examine the impact such
algorithms have on the static resilience of the resulting
overlay to randomized failures and targeted attacks.

4.1 Simulation Setup

We simulate the Tapestry [18] and Chord [13] protocols
as representatives of their respective geometries (tree and
ring). When each node optimizes its cost function, it per-
forms random sampling to select neighbors and choose
the best one among the samples. In our experiments, we
use 32 samples for each routing level in Tapestry or each
finger in Chord.

Our simulations use 5100 node transit-stub network
topologies generated using the GT-ITM library [15]. We
construct Chord and Tapestry overlays of 4096 nodes
by placing overlay nodes to random physical locations.
We gather results with 9 different configurations for GT-
ITM, generate 3 transit-stub topologies each, and choose
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Figure 4: CDF of the number of incoming edges for uniform
processing delay distribution

3 overlay node placements on each topology.
For our Chord experiments, each node forwards mes-

sages to the live neighbor that is closest to the destination
in the identifier space. The lookup fails if all neighbors
before the destination in the namespace fail. For Tapestry,
each node forwards messages to the first live neighbor
matching one more prefix digit. If all primary and backup
links in the routing entry fail, the lookup fails.

4.2 Performance

We begin by quantifying the effects of neighbor selection
algorithms on performance. We look at two different dis-
tributions of node processing delay: uniform and bimodal.
Because Tapestry and Chord results are similar in both
cases, we will only show Tapestry results.

We start by assigning node processing delay from a
coarse-grained uniform distribution. We assign the pro-
cessing delay uniformly from �Y�� B � �Y�� B � �Y�� B����	� B�
 where 

is the maximum processing delay. Figure 2 shows aver-
age lookup latency over all node pairs in Tapestry. By
exploiting network proximity and heterogeneous capac-
ity, CapDist achieves the best lookup performance. When
processing delay variation is high ( 
 =1s), CapDist per-
forms 30

�
better than Dist and 48

�
better than Ran-

dom. When no variation exists, (i.e., 
 =0s), Dist and
CapDist exploit network proximity to outperform Ran-
dom and Cap.

We now look at a bimodal model for processing capac-
ity, where nodes are either fast or slow. Fast nodes pro-
cess 100 lookup messages per second while slow nodes
process 1 message per second. Figure 3 shows that as we
vary the fraction of fast nodes from 0

�
to 20

�
, neighbor

selection using capacity (Cap and CapDist) favors routes
through fast nodes and achieves better performance. For
instances where the variation in processing capacity is ex-
tremely high, we expect that capacity utilization at fast
nodes will be limited by the routing constraints of the pro-
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Figure 5: Tapestry under random node failures. (a) Tapestry varying neighbor selection on one primary link (e.g., � ����� : primary
link chosen to optimize the � ����� cost function), (b) Tapestry varying neighbor selection on one primary link and two backup links
(e.g., � ����� : all three links chosen to optimize the � ���C� cost function), (c) Tapestry varying neighbor selection on one primary link
and choosing two backup links randomly (e.g., � ����� : primary link chosen to optimize the � ����� cost function and two backup links
chosen randomly).
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Figure 6: Chord under random node failures. (a) Chord varying finger selection on finger table, (b) Chord varying finger selection
on finger table and having 4 sequential neighbors.

tocol, and the deployment of virtual nodes is necessary to
fully exploit the excess processing capacity.

Using latency optimization creates uneven distributions
of nodes’ incoming node degrees. Nodes near the cen-
ter of the network (i.e., transit domains) and nodes with
high capacity are preferred, and minimize path latency by
utilizing low latency links or low processing delay. Fig-
ure 4 shows the cumulative distribution function (CDF)
of nodes’ in-degrees in Tapestry networks with different
neighbor selection algorithms. Unlike Random, results
from cost-optimized overlays show slow transitions and
long tails. We also observe that the CDF of nodes in tran-
sit domains is more skewed and has longer tails than that
of nodes in stub domains.

4.3 Static Resilience

Previous work by Albert et al. showed an inherent trade-
off for unstructured networks between resilience against
random node failures and resilience against targeted at-
tacks [1]. In this section, we explore through simula-
tion the impact that neighbor selection algorithms have
on static resilience.

We measure resilience as the proportion of all pairs of

live endpoints that can still route to each other via the
overlay after an external event, either randomized node
failures or targeted attacks. We assume attacks focus on
removing nodes with the highest in-degree in order to
maximize damage to overall network reachability. For
these experiments, we assume nodes have an uniform pro-
cessing delay distribution with 
 = 0.5s.

For Tapestry, we examine resilience of the base proto-
col, the base protocol plus additional backup routes (all
chosen using a number of neighbor selection algorithms),
and the base protocol plus backup routes chosen at ran-
dom. Note that adding two backup links triples the num-
ber of neighbors. For Chord, we examine the base proto-
col and the base protocol plus sequential neighbors.

4.3.1 Random Node Failures

We first examine the impact of randomized node failures.
In general, we would expect that using selection algo-
rithms that prefer high capacity nodes results in more hier-
archy in the network, where many weaker nodes are con-
nected by highly interconnected high capacity nodes. In
such cases, we expect that randomized failures will dis-
connect weaker nodes from the network, but have a rela-
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Figure 7: Tapestry nodes under attack. (a) Tapestry varying neighbor selection on one primary link (e.g., � ����� : primary link
chosen to optimize the � ���C� cost function), (b) Tapestry varying neighbor selection on one primary link and two backup links (e.g.,
� ����� : all three links chosen to optimize the � ����� cost function), (c) Tapestry varying neighbor selection on one primary link and
choosing two backup links randomly (e.g., � ����� : primary link chosen to optimize the � ����� cost function and two backup links
chosen randomly).
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Figure 8: Chord nodes under attack. (a) Chord varying finger selection on finger table, (b) Chord varying finger selection on finger
table and having 4 sequential neighbors.

tively low impact on overall connectivity.
Figures 5 and 6 show the failure tolerance of Tapestry

and Chord, respectively. Surprisingly, we see the fail-
ure tolerance is a little affected by neighbor selections.
The tighter outgoing link constraints of structured peer to
peer networks allow less variation in the resulting topol-
ogy than unstructured networks. Every node has at least� @!e����E� D outgoing links, and randomized naming also
smoothens out distribution of outgoing edges. Since each
lookup takes

� @)e����H� D hops regardless of neighbor selec-
tion cost functions, the probability of meeting randomly
failed nodes in a lookup will be similar.

Adding backup links in Tapestry and sequential neigh-
bors in Chord dramatically improves failure tolerance.
Note that in Tapestry, failure curves change from an ex-
ponentially increasing curve to a smooth S-shaped curve
due to path redundancy when backup links are added.

4.3.2 Targeted Node Attacks

While structured peer to peer protocols define a minimum
number of outgoing links per node, a node’s number of in-
coming links is unrestricted. This means that neighbor se-
lection algorithms considering capacity will skew the net-

work such that powerful nodes have significantly higher
in-degrees than weaker nodes. This means that like the
unstructured networks studied by Albert et al., structured
peer to peer overlays that consider capacity in neighbor
selection are vulnerable to attacks.

As shown in Figures 7 and 8, attacking nodes with high
in-degree affects network connectivity severely. Random
shows the best attack tolerance among neighbor selec-
tions. CapDist has worse attack tolerance than Dist, al-
though it has better performance as shown in Section 4.2.

This result demonstrates a fundamental tradeoff be-
tween performance and attack resilience in structured
overlay construction. The performance gain from neigh-
bor selection algorithms increases the variability of in-
degrees among nodes. Nodes with high capacity or nodes
near the center of the network end up with high in-degrees
and have a disproportionately large impact on network
connectivity when they fail.

4.3.3 Analysis of Extra Redundancy

We observe that adding backup links or sequential neigh-
bors can increase attack tolerance significantly. Ran-
domly choosing backup links in Tapestry and sequential



neighbors in Chord avoids routing hotspots that are vul-
nerable to targeted attacks. In Tapestry for example, cost-
optimized backup links are less effective at improving at-
tack tolerance than random backup links. Paying the ad-
ditional cost of maintaining extra links improves static re-
silience against targeted attacks.

Another technique to improve tolerance is to impose
a maximum in-degree per node, but this restriction in-
creases lookup latency. Bounding the degree of over-
lay nodes can be used as a defense against Eclipse at-
tacks [12].

5 Conclusion

Previous research argued for the consideration of network
or physical characteristics of nodes in overlay construc-
tion. In this paper, we take a quantitative approach to ex-
amining the benefits and costs of considering such criteria
in overlay construction.

We present a generalized model for neighbor selection
that incorporates metrics for network proximity and avail-
able resources (capacity), and show that while consid-
ering these factors can lead to significant gains in rout-
ing performance, these benefits come with their associ-
ated costs. We find that the choice of neighbor selection
algorithm drives a tradeoff between performance and re-
silience to attacks.

Optimized structured overlays have unbalanced struc-
tures. These overlays do not bound the number of in-
coming links per node. Thus central nodes in a network
or nodes with more resources will have much higher in-
degree than others. Should high degree nodes be attacked,
the impact on network connectivity is severe. On the other
hand, the minimum out-degree means even for overlays
that optimize towards proximity or available resources,
most nodes achieve enough resilience against randomized
failures.

As future work, we intent to investigate the resilience
of different geometries under different neighbor selection
algorithms. We also plan to investigate the impact of these
neighbor selection algorithms on dynamic resilience, such
as when maintenance algorithms repair failures over time.
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