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Abstract

In Peer-to-Peer networks based on consistent hashing
and ring topology each server is responsible for an
interval chosen (pseudo-)randomly on a circle. The
topology of the network, the communication load and
the amount of data a server stores depend heavily on
the length of its interval.

Additionally the nodes are allowed to join the net-
work or to leave it at any time. Such operations can
destroy the balance of the network, even if all the in-
tervals had equal lengths in the beginning.

This paper deals with the task of keeping such a sys-
tem balanced so that the lengths of intervals assigned
to the nodes differ at most by a constant factor. We
propose a simple fully distributed scheme which works
in a constant number of rounds and achieves optimal
balance with high probability. Each round takes time
at most O(D + log n), where D is the diameter of
a specific network (e.g. Θ(log n) for Chord [15] and
Θ

(
log n

log log n

)
for [12, 11]).

The scheme is a continuous process which does not
have to be informed about the possible imbalance or
the current size of the network network to start work-
ing. The total number of migrations is within a con-
stant factor from the number of migrations generated
by the optimal centralized algorithm starting with the
same initial network state.

1 Introduction

Peer-to-Peer networks are an efficient tool for storage
and location of data since there is no central server
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which could become a bottleneck and the data is evenly
distributed among the participants.

The Peer-to-Peer networks that we are considering,
are based on consistent hashing [6] with ring topology
like Chord [15], Tapestry [5], Pastry [14] and a topol-
ogy inspired by de Bruijn graph [12, 11]. The exact
structure of the topology is not relevant. It is, how-
ever, important that each server has a direct link to its
successor and predecessor on the ring and that there
is a routine that lets any server contact the server re-
sponsible for any given point in the network in time
D.

A crucial parameter of a network defined in this way
is its smoothness which is the ratio of the length of the
longest interval to the length of the shortest interval.
The smoothness is a parameter which informs about
two aspects of load balance: the first one is the storage
load of a server; the longer the interval is, the more
data has to be stored in the server. The other aspect
is the degree of a node; a longer interval has a higher
probability of being contacted by many short intervals
which increases its in-degree. Apart from that, in [12,
11] it is crucial for the whole system design that the
smoothness is constant. Even if we choose the points
for the nodes fully randomly, the smoothness can be
as high as Ω(n · log n), whereas we would like it to be
constant (n denotes the current number of nodes).

In this paper we concentrate our efforts on the aspect
of load balancing related to the network properties,
that is we aim at making the lengths of all intervals
even. We do not balance the load caused by stored
items or their popularity.

1.1 Our results

We present a fully distributed algorithm which makes
the smoothness constant using Θ(D+log n) direct com-
munication steps per node.

1.2 Related work

Load balancing has been a crucial issue in the field of
Peer-to-Peer networks since the design of the first net-
work topologies like Chord [15]. It was proposed that
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each real server works as log n virtual servers, thus
greatly decreasing the probability that some server
will get a large part of the ring. Some extensions
of this method were proposed in [13] and [4], where
more schemes based on virtual servers were introduced
and experimentally evaluated. Unfortunately, such ap-
proach increases the degree of each server by a factor
of log n, because each server has to keep all the links
of all its virtual servers.

The paradigm of many random choices [10] wasused
by Byers et al [3] and by Naor and Wieder [12, 11].
When a server joins, it contacts log n random places in
the network and chooses to cut the longest of all the
found intervals. This yields constant smoothness with
high probability.1

A similar approach was proposed in [1]. It exten-
sively uses the structure of the hypercube to decrease
the number of random choices to one and the commu-
nication to only one node and its neighbors. It also
achieves constant smoothness with high probability.

The approaches above have a certain drawback.
They both assume that servers join the network se-
quentially. What is more important, they do not pro-
vide analysis for the problem of balancing the intervals
afresh in case when servers leave the network.

One of the most recent approaches due to Karger
and Ruhl is presented in [7, 8]. The authors propose
a scheme, in which each node chooses Θ(log n) places
in the network and takes responsibility for only one of
them. This can change, if some nodes leave or join, but
each node migrates only among the Θ(log n) places it
chose and after each operation Θ(log log n) nodes have
to migrate on expectation. The advantage of our algo-
rithm is that the number of migrations is always within
constant factors from optimal centralized algorithm.
Both their and our algorithms use only tiny messages
for checking the network state, and in both approaches
the number of messages in half-life2 can be bounded by
Θ(log n) per server. Their scheme is claimed to be re-
sistant to attacks thanks to the fact that each node can
only join in logarithmically bounded number of places
on the ring. However, in [2] it is stated that such a
scheme cannot be secure and that more sophisticated
algorithms are needed to provide provable security.

Manku [9] presented a scheme based on a virtual bi-
nary tree that achieves constant smoothness with low
communication cost for servers joining or leaving the

1With high probability (w.h.p.) means with probability at
least 1−O( 1

nl ) for arbitrary constant l.
2Half-life of the network is the time it takes for half of the

servers in the system to arrive or depart.

network. It is also shown that the smoothness can
be diminished to as low as (1 + ε) with communica-
tion per operation increased to O(1/ε). All the servers
form a binary tree, where some of them (called active)
are responsible for perfect balancing of subtrees rooted
at them. Our scheme treats all servers evenly and is
substantially simpler.

2 The algorithm

In this paper we do not aim at optimizing the constants
used, but rather at the simplicity of the algorithm and
its analysis. For the next two subsections we fix a sit-
uation with some number n of servers in the system,
and let l(Ii) be the length of the interval Ii correspond-
ing to server i. For the simplicity of the analysis we
assume a static situation, i.e. no nodes try to join or
leave the network during the rebalancing.

2.1 Estimating the current number of
servers

The goal of this subsection is to provide a scheme
which, for every server i, returns an estimate ni of
the total number of nodes, so that each ni is within a
constant factor of n, with high probability.

Our approach is based on [2] where Awerbuch and
Scheideler give an algorithm which yields a constant
approximation of n in every node assuming that the
nodes are distributed uniformly at random in the in-
terval [0, 1].

We define the following infinite and continuous pro-
cess. Each node keeps a connection to one random
position on the ring. This position is called a marker.
The marker of a node is fixed only for D rounds during
which the node is looking for a new random location
for the marker.

The process of constantly changing the positions of
markers is needed for the following reason. We will
show that for a fixed random configuration of markers
our algorithm works properly with high probability.
However, since the process runs forever, and nodes are
allowed to leave and join (and thus change the posi-
tions of their markers), a bad configuration may appear
at some point in time. We assure that the probability
of failure in time step t is independent of the probabil-
ity of failure in time step t + D, and this enables the
process to recover even if a bad event occurs.

Each node v estimates the size of the network as
follows. It sets initially l := lv which is the length
of its interval and m := mv which is the number of
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markers its interval stores. As long as m < log 1
l , the

next not yet contacted successor is contacted and both
l and m are increased by its length and the number of
markers, respectively.

After that, l is decreased so that m = log 1
l . This

can be done locally using only the information from
the last server on our path.

The following Lemma from [2] states how large l is
when the algorithm stops.

Lemma 1 With high probability, α · log n
n ≤ l ≤ β · log n

n
for constants α and β.

In the following corollary we slightly reformulate this
lemma in order to get an approximation of the number
of servers n from an approximation of log n

n .

Corollary 2 Let l be the length of an interval found
by the algorithm. Let ni be the solution of log x −
log log x = log(1/l). Then with high probability n

β2 ≤
ni ≤ n

α2 .

In the rest of the paper we assume that each server
has computed ni. Additionally there are global con-
stants l and u such that we may assume l · ni ≤ n ≤
u · ni, for eeach i.

2.2 The load balancing algorithm

We will call the intervals of length at most 4
l·ni

short
and intervals of length at least 12·u

l2·ni
long. Intervals

of length between 4
l·ni

and 12·u
l2·ni

will be called middle.
Notice that short intervals are defined so that each
middle or long interval has length at least 4

n . On the
other hand, long intervals are defined so that halving
long interval we never obtain a short interval.

The algorithm will minimize the length of the
longest interval, but we also have to take care that no
interval is too short. Therefore, before we begin the
routine, we force all the intervals with lengths smaller
than 1

2·l·ni
to leave the network. By doing this, we

assure that the length of the shortest interval in the
network will be bounded from below by 1

2·n . We have
to explain why this does not destroy the structure of
the network.

First of all, it is possible that we remove a huge
fraction of the nodes. It is even possible that a very
long interval appears, even though the network was
balanced before. This is not a problem, since the al-
gorithm will rebalance the system. Besides, if this al-
gorithm is used also for new nodes at the moment of
joining, this initialization will never be needed. We do

not completely remove the nodes with too short inter-
vals from the network. The number of nodes n and
thus also the number of markers is unaffected, and the
removed nodes will later act as though they were sim-
ple short intervals. Each of these nodes can contact
the network through its marker.

Our algorithm works in rounds. In each round we
find a linear number of short intervals which can leave
the network without introducing any new long inter-
vals and then we use them to divide the existing long
intervals.

The routine works differently for different nodes, de-
pending on the initial server’s interval’s length. The
middle intervals and the short intervals which decided
to stay, help only by forwarding the contacts that come
to them. The pseudocodes for all types of intervals are
depicted in Figure 1.

Theorem 3 The algorithm has the following proper-
ties, all holding with high probability:

1. In each round each node incurs a communication
cost of at most O(D + log n).

2. The total number of migrated nodes is within a
constant factor from the number of migrations
generated by the optimal centralized algorithm
with the same initial network state. Moreover,
each node is migrated at most once.

3. O(1) rounds are sufficient to achieve constant
smoothness.

Proof. The first statement of the theorem follows eas-
ily from the algorithm due to the fact that each short
node sends a message to a random destination which
takes time D and then consecutively contacts the suc-
cessors of the found node. This incurs additional com-
munication cost of at most r ·(log n+log u). Addition-
aly in each round each node changes the position of its
marker and this operation also incurs communication
cost D.

The second one is guaranteed by the property that if
a node tries to leave the network and join it somewhere
else, it is certain that its predecessor is short and is
not going to change its location. This assures that the
predecessor will take over the job of our interval and
it will not become long. Therefore, no long interval
is ever created. Both our and the optimal algorithm
have to cut each long interval into middle intervals.
Let M and S be the upper thresholds for the lengths
of a middle and short interval, respectively, and l(I)
the length of an arbitrary long interval. The optimal

3



short
state := staying
if (predecessor is short )

with probability 1
2 change state to leaving

if (state = leaving and predecessor.state = staying)
{

p := random(0..1)
P := the node responsible for p
contact consecutively the node P and its 6 · log(u · ni) successors on the ring
if (a node R accepts)

leave and rejoin in the middle of the interval of R
}
At any time, if any node contacts, reject.

middle
At any time, if any node contacts, reject.

long
wait for contacts
if any node contacts, accept

Figure 1: The algorithm with respect to lengths of intervals (one round)

algorithm needs at least dl(I)/Me cuts, wheras ours
always cuts an interval in the middle and performs at
most 2dlog(l(I)/S)e cuts, which can be at most constant
times larger because M/S is constant.

The statement that each server is migrated at most
once follows from the reasoning below. A server is mi-
grated only if its interval is short. Due to the gap be-
tween the upper threshold for short interval and lower
threshold for long interval, after being migrated the
server never takes responsibility for a short interval,
so it will not be migrated again.

In order to prove the last statement of the theorem,
we show the following two lemmas. The first one shows
how many short intervals are willing to help during a
constant number of rounds. The second one states how
many helpful intervals are needed so that the algorithm
succeeds in balancing the system.

Lemma 4 For any constant a ≥ 0, there exists a con-
stant c, such that in c rounds at least a · n nodes are
ready to migrate, w.h.p.

Proof. As stated before, the length of each middle
or long interval is at least 4

n and thus at most 1
4 · n

intervals can be middle or long . Therefore, we have
at least 3

4 · n nodes responsible for short intervals.
We number all the nodes in order of their position in

the ring with numbers 0, . . . , n − 1. For simplicity we
assume that n is even, and divide the set of all nodes
into n/2 pairs Pi = (2i, 2i + 1), where i = 0, ..., n

2 − 1.

Then there are at least 1
2 · n − 1

4 · n = 1
4 · n pairs Pi,

which contain indexes of two short intervals. Since the
first element of a pair is assigned state staying with
probability at least 1/2 and the second element state
leaving with probability 1/2, the probability that the
second element is eager to migrate is at least 1/4. For
two different pairs Pi and Pj migrations of their second
elements are independent. We stress here that this rea-
soning only only bounds the number of nodes able to
migrate from below. For example, we do not consider
first elements of pairs which also may migrate in some
cases. Nevertheless, we are able to show that the num-
ber of migrating elements is large enough. Notice also
that even if in one round many of the nodes migrate,
it is still guaranteed that in each of the next rounds
there will still exist at least 3

4 · n short intervals.
The above process stochastically dominates a

Bernoulli process with c · n/4 trials and single trial
success probability p = 1/4. Let X be a random vari-
able denoting the number of successes in the Bernoulli
process. Then E[X] = c·n/16 and we can use Chernoff
bound to show that X ≥ a · n with high probability if
we only choose c large enough with respect to a.

In the following lemma we deal with cutting one long
interval into middle intervals.

Lemma 5 There exists a constant b such that for any
long interval I, after b ·n contacts are generated over-
all, the interval I will be cut into middle intervals,
w.h.p.
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Proof. For the further analysis we will need that
l(I) ≤ log n

n , therefore we first consider the case where
l(I) > log n

n . We would like to estimate the number of
contacts that have to be generated in order to cut I
into intervals of length at most log n

n . We depict the
process of cutting I on a binary tree. Let I be the
root of this tree and its children the two intervals into
which I is cut after it receives the first contact. The
tree is built further in the same way and achieves its
lowest level when its nodes have length s such that
1
2 ·

log n
n ≤ s ≤ log n

n . The tree has height at most log n.
If a leaf gets log n contacts, it can use them to cover
the whole path from itself to the root. Such covering
is a witness that this interval will be separated from
others. Thus, if each of the leaves gets log n contacts,
interval I will be cut into intervals of length at most
log n

n .
Let b1 be a sufficiently large constant and consider

first b1 · n contacts. We will bound the probability
that one of the leaves gets at most log n of these con-
tacts. Let X be a random variable depicting how many
contacts fall into a leaf J . The probability that a
contact hits a leaf is equal to the length of this leaf
and the expected number of contacts that hit a leaf is
E[X] ≥ b1 · log n. Chernoff bound guarantees that, if
b1 is large enough, the number of contacts is at least
log n, w.h.p.

There are at most n leaves in this tree, so each of
them gets sufficiently many contacts with high prob-
ability. In the further phase we assume that all the
intervals existing in the network are of length at most
log n

n .
Let J be any of such intervals. Consider the maximal

possible set K of predecessors of J such that their total
length is at most 2 · log n

n . Maximality assures that
l(K) ≥ log n

n . The upper bound on the length assures
that even if the intervals belonging to K and J are
cut (”are cut” in this context means ”were cut”, ”are
being cut” and/or ”will be cut”) into smallest possible
pieces (of length 2

n), their number does not exceed 6 ·
log n. Therefore, if a contact hits some of them and is
not needed by any of them, then it is forwarded to J
and can reach its furthest end. We consider only the
contacts that hit K. Some of them will be used by K
and the rest will be forwarded to J .

Let b2 be a constant and Y be a random variable
denoting the number of contacts that fall into K in
a process in which b2 · n contacts are generated in the
network. We want to show that, with high probability,
Y is large enough, i.e. Y ≥ 2 · n · (l(J) + l(K)). The
expected value of Y can be estimated as E[Y ] = b2 ·

n · l(K) ≥ b2 · log n. Again, Chernoff bound guarantees
that Y ≥ 6 · log n, with high probability, if b2 is large
enough. This is sufficient to cut both K and J into
middle intervals.

Now taking b = b1 + b2, finishes the proof of
Lemma 5.

Combining Lemmas 4 and 5 with a = b, finishes the
proof of Theorem 3.

3 Conclusion and future work

We have presented a distributed randomized scheme
that continously rebalances the lengths of intervals of a
Distributed Hash Table based on a ring topology. We
proved that the scheme works with high probability
and that its cost measured in the number of migrated
nodes is comparable to the best possible.

Our scheme still has some deficiencies. The con-
stants which emerge from the analysis are huge. We
are convinced that these constants are much smaller
than their bounds implied by the analysis. In the ex-
perimental evaluation one can play with at least a few
parameters to see which configuration yields the best
behaviour in practice. The first parameter is how well
we approximate the number of servers n present in the
network. Another is how many times a help-offer is
forwarded before it is discarded. And the last one is
the possibility to redefine the lengths of short , mid-
dle and long intervals. In future we plan to redesign
the scheme so that we can approach the smoothness of
1 + ε with additional cost of 1/ε per operation as it is
done in [9].

Another drawback at the moment is that the analy-
sis demands that the algorithm is synchronized. This
can probably be avoided with more careful analysis in
the part where nodes with short intervals decide to
stay or help. On the one hand, if a node tries to help,
it blocks its predecessor for Θ(log n) rounds. On the
other, only one decicion is needed per Θ(log n) steps.

Another issue omitted here is counting of nodes.
Due to the space limitations we have decided to use
the scheme proposed by Awerbuch and Scheideler in
[2]. We developed another algorithm which is more
compatible to our load balancing scheme. It inserts
∆ ≥ log n markers per node and instead of evening
the lengths of intervals it evens their weights defined
as the number of markers contained in an interval. We
can prove that such scheme also rebalances the whole
system in constant number of rounds, w.h.p.
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As mentioned in the introduction our scheme can be
proven to use Θ(log n) messages in half-life, provided
that half-life is known. We omit the proof due to space
limitations.
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