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Abstract

In this paper, we present Chainsaw, a p2p overlay mul-
ticast system that completely eliminates trees. Peers are
notified of new packets by their neighbors and must ex-
plicitly request a packet from a neighbor in order to re-
ceive it. This way, duplicate data can be eliminated and
a peer can ensure it receives all packets. We show with
simulations that Chainsaw has a short startup time, good
resilience to catastrophic failure and essentially no packet
loss. We support this argument with real-world experi-
ments on Planetlab and compare Chainsaw to Bullet and
Splitstream using MACEDON.

1 Introduction
A common approach taken by peer-to-peer (p2p) multicast
networks is to build a routing tree rooted at the sender. The
advantage of a tree-based topology is that once the tree
is built, routing decisions are simple and predictable—a
node receives data from its parent and forwards it to its
children. This tends to minimize both delay and jitter
(variation in delay).

However, there are disadvantages to a tree-based ap-
proach. Since nodes depend on their parent to deliver data
to them, any data loss near the root node affects every node
below it. Moreover, whenever a node other than a leaf
node leaves the system, the tree must be quickly repaired
to prevent disruption. Another disadvantage of a tree is
that interior nodes are responsible for fanning out data to
all of their children, while the leaf nodes do not upload at
all.

Another common feature of p2p multicast systems is
that they arepush-based, i.e. they forward data based on
some routing algorithm without explicit requests from the
recipient. A purely push-based system can’t recover from
lost transmissions easily. Moreover, if there are multiple
senders to a given node, there is a chance that the node will
receive duplicate data, resulting in wasted bandwidth.

In a pull-based system, data is sent to nodes only in re-
sponse to a request for that packet. As a result, a node
can easily recover from packet loss by re-requesting lost
packets. Moreover, there is no need for global routing al-
gorithms, as nodes only need to be aware of what packets
their neighbors have.

We designed Chainsaw, a pull-based system that does
not rely on a rigid network structure. In our experiments
we used a randomly constructed graph with a fixed mini-
mum node degree. Data is divided into finite packets and

disseminated using a simple request-response protocol. In
our simulations we were able to stream 100kB/sec of data
to 10,000 nodes. Our system also withstood the simulta-
neous failure of half the nodes in the system with 99.6% of
the remaining nodes suffering no packet loss at all. More-
over, we observed that new nodes joining the system could
start playback within a third of a second without suffering
any packet loss. To validate our simulation results, we
implemented our protocol in Macedon [13] and ran exper-
iments on PlanetLab [6], and obtained comparable results.
We also compared the performance of our system to Bul-
let [11] and SplitStream [3].

In Section 2 we outline work related to ours. In Section
3 we describe the our system architecture. In Section 4 we
present our experimental results. In Section 5 we outline
some future work and finally, we conclude.

2 Background

Chu et al. [5] argue that IP is not the correct layer to imple-
ment multicast. They proposedNarada, a self-organizing
application-layer overlay network. Since then many over-
lay networks [3–5, 9, 11, 12] have been proposed, provid-
ing different characteristics. We give a brief overview of
SplitStream, Bullet and Gossip-style protocols. We also
give an overview of BitTorrent, because it is similar in
spirit to our system even though it is not a multicast sys-
tem, but a file-transfer protocol.

2.1 SplitStream

SplitStream [3] is a tree-based streaming system that is
built on top of the Scribe [4] overlay network, which in
turn is built on top of the Pastry [14] structured routing
protocol. In SplitStream, the data is divided into several
disjoint sections calledstripes, and one tree is built per
stripe. In order to receive the complete stream, a node
must join every tree. To ensure that a node does not have
to upload more data than it receives, the trees are built such
that every node is an interior node in precisely one tree.

In addition to improving fairness, ensuring that a node
is a leaf node in all but one of the trees improves robust-
ness. A node is only responsible for data forwarding on
one of the stripes, so if a node suddenly leaves the system,
at most one stripe is affected. However, SplitStream does
not have any mechanism for recovering from packet loss,
and any loss near the root of a tree will affect every node
downstream from it.
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2.2 Bullet
Bullet [11] is another high-bandwidth data dissemination
method. It aims to provide nodes with a steady flow of
data at a high rate. A Bullet network consists of a tree
with a mesh overlaid on top of it.

The data stream is divided into blocks which are fur-
ther divided into packets. Nodes transmit a disjoint sub-
set of the packets to each of their children. An algorithm
called RanSub [10] distributes random, orthogonal sub-
sets of nodes every epoch to each node participating in the
overlay. Nodes receive a subset of the data from their par-
ents and recover the remaining by locating a set of disjoint
peers using these random subsets.

2.3 Gossip-based Broadcast
Gossip protocols provide a scalable option for large scale
information dissemination. Pcast [2] is a two phase proto-
col in which the exchange of periodic digests takes place
independent of the data dissemination. Lpbcast [8] ex-
tends pcast in that it requires nodes to have only partial
membership information.

2.4 BitTorrent
The BitTorrent [7] file sharing protocol creates an unstruc-
tured overlay mesh to distribute a file. Files are divided
into discretepieces. Peers that have a complete copy of
the file are calledseeds. Interested peers join this overlay
to download pieces of the file. It is pull-based in that peers
must request a piece in order to download it. Peers may
obtain pieces either directly from the seed or exchange
pieces with other peers.

3 System Description
We built a request-response based high-bandwidth data
dissemination protocol drawing upon gossip-based pro-
tocols and BitTorrent. The source node, called aseed,
generates a series of new packets with monotonically in-
creasing sequence numbers. If desired, one could eas-
ily have multiple seeds scattered throughout the network.
In this paper we assume that there is only one seed in
the system. We could also support many-to-many mul-
ticast applications by replacing the sequence number with
a (stream-id, sequence #) tuple. However, for the appli-
cations we describe in this paper, a single sender and an
integer sequence number suffice.

Every peer connects to a set of nodes that we call its
neighbors. Peers only maintain state about their neigh-
bors. The main piece of information they maintain is a list
of packets that each neighbor has. When a peer receives a
packet it sends a NOTIFY message to its neighbors. The
seed obviously does not download packets, but it sends out
NOTIFY messages whenever it generates new packets.

Every peer maintains awindow of interest, which is the
range of sequence numbers that the peer is interested in
acquiring at the current time. It also maintains and informs
its neighbors about awindow of availability, which is the
range of packets that it is willing to upload to its neighbors.

The window of availability will typically be larger than the
window of interest.

For every neighbor, a peer creates a list ofdesired pack-
ets, i.e. a list of packets that the peer wants, and is in the
neighbor’s window of availability. It will then apply some
strategy to pick one or more packets from the list and re-
quest them via a REQUEST message. Currently, we sim-
ply pick packets at random, but more intelligent strategies
may yield enhanced improvements (see Section 5.2).

A peer keeps track of what packets it has requested
from every neighbor and ensures that it does not request
the same packet from multiple neighbors. It also limits
the number of outstanding requests with a given neigh-
bor, to ensure that requests are spread out over all neigh-
bors. Nodes keep track of requests from their neighbors
and send the corresponding packets as bandwidth allows.

The algorithms that nodes use to manipulate their win-
dows and to decide when to pass data up to the application
layer are determined by the specific requirements of the
end application. For example, if the application does not
require strict ordering, data may be passed up as soon as it
is received. On the other hand, if order must be preserved,
data would be passed up as soon as acontiguous block is
available.

For the experiments outlined in this paper, we built our
graph by having every node repeatedly connect to a ran-
domly picked node, from the set of known hosts, until it
was connected to a specified minimum number of neigh-
bors. Our system does not rely on any specific topology,
however we could use other membership protocols like in
BitTorrent [7] or Gnutella [1]

For the remainder of this paper, we assume that the ap-
plication is similar to live streaming. The seed generates
new packets at a constant rate that we refer to as thestream
rate. Nodes maintain a window of interest of a constant
size and slide it forward at a rate equal to the stream rate.
If a packet has not been received by the time it “falls off”
the trailing edge of the window, the node will consider that
packet lost and will no longer try to acquire it.

During our initial investigations, we observed that some
packets were never requested from the seed until several
seconds after they were generated. As a result, those pack-
ets wouldn’t propagate to all the nodes in time, resulting in
packet loss. This is an artifact of picking pieces to request
at random and independently from each neighbor, result-
ing in some pieces not being requested when that neighbor
is the seed.

We fixed this problem with an algorithm calledRequest
Overriding. The seed maintains a list of packets that have
never been uploaded before. If the list is not empty and
the seed receives a request for a packet that is not on
the list, the seed ignores the sequence number requested,
sends the oldest packet on the list instead, and deletes that
packet from the list. This algorithm ensures that at least
one copy of every packet is uploaded quickly, and the seed
will not spend its upload bandwidth on uploading packets
that could be obtained from other peers unless it has spare
bandwidth available.
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Figure 1: The seed’s upload rate and the average upload and
download rate for all other nodes.

In most cases, it is better to have the seed push out
new packets quickly, but there are situations when Re-
quest Overriding is undesirable. For example, a packet
may be very old and in danger of being lost. Therefore,
REQUEST packets could have a bit that tells the seed to
disable Request Overriding. We have not yet implemented
this bit in our simulator or prototype.

4 Experimental Results
We built a discrete-time simulator to evaluate our system
and run experiments on large networks. Using it, we were
able to simulate 10,000 node networks. We also built a
prototype implementation and compared it to Bullet [11]
and SplitStream [3].

4.1 No Loss Under Normal Operation
In order to show that our system supports high-bandwidth
streaming to a large number of nodes, we simulated a
10,000 node network and attempted to stream 100 kB/sec
over it. The seed had an upload capacity of 200 kB/sec,
while all other nodes had upload and download capacities
of 120 kB/sec and maintained 5 second buffers. The end-
to-end round-trip latency between all pairs of nodes was
50 ms.

Figure 1 shows the upload bandwidth of the seed and
the average upload and download speeds of the non-seed
nodes as a function of time. It took less than three seconds
for nodes to reach the target download rate of 100 kB/sec.
Once attained, their bandwidth remained steady at that rate
through the end of the experiment. On average, the non-
seed nodes uploaded at close to 100 kB/sec (well short
of their 120 kB/sec capacity), while the seed saturated its
upload capacity of 200 kB/sec.

Figure 2 shows another view of the the same experi-
ment. The solid line represents the highest sequence num-
ber of contiguous data downloaded by a node, as a func-
tion of time. The time by which this line lags behind the
dashed line representing the seed is the buffering delay for
that node. The dotted diagonal line below the progress
line represents the trailing edge of the node’s buffer. If the
progress line were to touch the line representing the trail-
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Figure 2:A plot of the highest sequence number of contiguous
data downloaded by a typical node as a function of time. The
diagonal line on top (dashed) represents the new pieces gener-
ated by the seed, while the bottom line (dotted) represents the
trailing edge of the node’s buffer.
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Figure 3:A zoomed in view of the highlighted portion of Fig-
ure 2. The line grazing the stepped solid line represents the
minimum buffering delay that avoids packet loss.

ing edge, that would imply an empty buffer and possible
packet loss.

To make it easier to read, we zoom in on a portion of the
graph in Figure 3. We also add a third diagonal line that
just grazes the node’s progress line. The time by which
this line lags behind the seed line is the minimum buffer-
ing delay required to avoid all packet loss. For this node
(which is, in fact, the worst of all nodes) the delay is 1.94
seconds. The remaining nodes had delays between 1.49
and 1.85 seconds.

4.2 Quick Startup Time
When a new node joins the system, it can shorten its play-
back time by taking advantage of the fact that its neighbors
already have several seconds worth of contiguous data in
their buffers. Rather than requesting the newest packets
generated by the seed, the node can start requesting pack-
ets that are several seconds old. It can quickly fill up its
buffer with contiguous data by requesting packets sequen-
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Figure 4:The bold line shows the behavior of a new node join-
ing at 50 sec contrasted with a node that has been in the system
since the start of the experiment.
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Figure 5:A zoomed in view highlighting the behavior during
the first few seconds of the node joining. The dotted line grazing
the bold line shows that the node could have started playback
within 330 ms without suffering packet loss.

tially rather than at random.
One of the nodes in the experiment described in Sec-

tion 4.1 joined the system 50 seconds later than rest. Since
other nodes lagged behind the seed by less than 2 seconds,
this node started by requesting packets that were 3 seconds
old. Figure 4 shows the behavior of this node contrasted
with the behavior of an old node. Since the node’s down-
load capacity is 20kB/sec higher than the stream rate, it
is able to download faster than the stream rate and fill its
buffer. In less than 15 seconds, its buffer had filled up to
the same level as the older nodes. From this point on, the
behavior of the new node was indistinguishable from the
remaining nodes.

From the zoomed in view in Figure 5, we observe that
the earliest possible playback line for the new node is 3.33
seconds behind the seed, or 330ms behind the point where
the node joined. This means the node could have started
playback within a third of a second of joining and not have
suffered any packet loss.
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Figure 6:Observed bandwidth trends when 50% of the nodes
are simultaneously failed at 50 seconds.

4.3 Resilience to Catastrophic Failure
We believe that Chainsaw is resilient to node failure be-
cause all a node has to do to recover from the failure of its
neighbor is to redirect packet requests from that neighbor
to a different one. We simulated a catastrophic event by
killing off half the non-seed nodes simultaneously.

On average, nodes would be left with half the neighbors
they had before the event, but it is likely that some unlucky
nodes end up with much fewer. Therefore, we started with
a minimum node degree of 40 instead of 30 to minimize
the chance of a node ending up with too few neighbors.
We used a 10 second buffer instead of a 5 second buffer to
prevent momentary disruptions in bandwidth from causing
packet loss.

Figure 6 shows the average download rate achieved by
the non-failed nodes. Contrary to what one might ex-
pect, the average bandwidth brieflyincreased following
the node failures! The progress line in Figure 7 helps
explain this counter-intuitive behavior. Initially, nodes
lagged 1.6 seconds behind the seed. Following the node
failures, the lag briefly increased to 5.2 seconds, but then
dropped to 0.8 seconds, because with fewer neighbors
making demands on their bandwidth, nodes were able to
upload and download pieces more quickly than before.
The brief spurt in download rate was caused by buffers
filling to a higher level than before.

The brief increase in lag was not because of reduced
bandwidth, but due to “holes” in the received packets.
Some of the failed nodes had received new packets from
the seed and not yet uploaded them to any other node.
However, since the seed only uploaded duplicate copies
of those packets after at least one copy of newer packets
had been uploaded, there was a delay in filling in those
holes.

Of the 4999 non-seed nodes that did not fail, 4981 nodes
(99.6%) suffered no packet loss at all. The remaining 18
nodes had packet loss rates ranging from 0.1% to 17.5%
with a mean of 3.74%. These nodes were left with be-
tween 9 and 13 neighbors—significantly below the aver-
age 20 neighbors. In practice, every node would keep a
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Figure 7: Progress of a non-failing node when 50% of the
nodes in the network simultaneously fail at 50 seconds. All ef-
fects of the catastrophic event are eliminated within 5 seconds.

list of known peers in addition to a neighbor list. When a
neighbor disappears, the node picks a neighbor randomly
from the known peers list and repeats this process until it
has a sufficient number of neighbors. We expect such a
mechanism to be robust, even with high rates of churn.

4.4 PlanetLab: Bullet and SplitStream
In order to compare Chainsaw against Bullet [11] and
SplitStream [3], we used the Macedon [13] prototyping
tool, developed by the authors of Bullet. Macedon al-
lows one to specify the high-level behavior of a system,
while letting it take care of the implementation details.
The Macedon distribution already includes implementa-
tions of Bullet and SplitStream, so we implemented our
protocol in their framework to allow a fair comparison be-
tween these systems.

We conducted our experiments on the PlanetLab [6]
test-bed, using 174 nodes with good connectivity and a
large memory capacity. For each of the three protocols,
we deployed the application, allowed time for it to build
the network and then streamed 600 kbits/sec (75 kB/sec)
over it for 360 sec. Half way into the streaming, at the
180 second mark, we killed off half the nodes to simulate
catastrophic failure.

Figure 8 shows the average download rate achieved by
the non-failing nodes before and after the event. Initially
both Chainsaw and Bullet achieved the target bandwidth
of 75 kB/sec. However, after the nodes failed, Bullet’s
bandwidth dropped by 30% to 53 kB/sec and it took 14
seconds to recover, while Chainsaw continued to deliver
data at 75 kB/sec with no interruption. SplitStream deliv-
ered 65 kB/sec initially, but the bandwidth dropped to 13
kB/sec after the failure event.

In SplitStream, every node is an interior node in one of
the trees, so its possible for a node with insufficient upload
bandwidth to become a bottleneck. When a large num-
ber of nodes fail, every tree is is likely to lose a number
of interior nodes, resulting in a severe reduction in band-
width. Macedon is still a work in progress and its au-
thors have not fully implemented SplitStream’s recovery
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mechanisms. Once implemented, we expect SplitStream’s
bandwidth to return to its original level in a few seconds,
once the trees are repaired. Therefore, we ignore Split-
Stream’s packet loss and focus on comparing Chainsaw to
Bullet for now.

The packet loss rates for both Chainsaw and Bullet were
unaffected by the catastrophic failure. With Chainsaw 73
of the 76 non-failing nodes had no packet loss at all. One
of the nodes had an a consistent loss rate of nearly 60%
throughout the experiment, whereas two others had brief
bursts of packet loss over intervals spanning a few sec-
onds. With Bullet, every node consistently suffered some
packet loss rates. The overall packet loss for various nodes
varied from 0.88% to 3.64% with a mean of 1.30%.

With Chainsaw, nodes did receive a small number of
duplicate packets due to spurious timeouts. However, the
duplicate data rate rarely exceeded 1%. With Bullet, on the
other hand, nodes consistently received 5-10% duplicate
data, resulting in wasted bandwidth.

We think that the improved behavior that Chainsaw ex-
hibits is primarily due to its design assumption that in the
common case most of a peer’s neighbors will eventually
receive most packets. When combined with the direct ex-
change of ”have” information, Chainsaw is able to locate
and request packets that it does not yet have within a few
RTTs, whereas Bullet’s propagation of such information
is divided into epochs spanning multiple seconds and is
dependent on few assumptions to the RanSub tree remain-
ing relatively intact. As a result Chainsaw has near-zero
packet loss, minimal duplicates and low delay.

5 Future Work
In our experiments we have used symmetric links so that
aggregate upload bandwidth was sufficient for every node
to receive the broadcast at the streaming rate. If large num-
bers of nodes have upload capacities less than the stream-
ing rate, as might be the case with ADSL or cable modem
users, users might experience packet loss. Further work
is needed to allocate bandwidth when insufficient capac-
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ity exists. Also we have not demonstrated experimentally
that Chainsaw performs well under high rates of churn,
although we expect that with its pure mesh architecture,
churn will not be a significant problem.

5.1 Incentives

So far, we have assumed that nodes are cooperative, in that
they willingly satisfy their neighbor’s requests. However,
studies [1, 15] have shown that large fractions of nodes
in peer-to-peer networks can beleeches, i.e. they try to
benefit from the system without contributing. Chainsaw is
very similar in design to our unstructured file-transfer sys-
tem SWIFT [16]. Therefore, we believe that we can adapt
SWIFT’s pairwise currency system to ensure that nodes
that do not contribute are the ones penalized when the to-
tal demand for bandwidth exceeds the total supply.

5.2 Packet Picking Strategy

Currently, nodes use a purely random strategy to decide
what packets to request from their neighbors. We find that
this strategy works well in general, but there are patholog-
ical cases where problems occur. For example, a node will
give the same importance to a packet that is in danger of
being delayed beyond the deadline as one that has just en-
tered its window of interest. As a result it may pick the
new packet instead of the old one, resulting in packet loss.

We may be able to eliminate these pathological cases
and improve system performance by picking packets to re-
quest more intelligently. Possibilities include taking into
account the rarity of a packet in the system, the age of the
packet, and its importance to the application. Some ap-
plications may assign greater importance to some parts of
the stream than others. For example, lost metadata pack-
ets may be far more difficult to recover from than lost data
packets.

6 Conclusion

We built a pull-based peer-to-peer streaming network on
top of an unstructured topology. Through simulations, we
demonstrated that our system was capable of disseminat-
ing data at a high rate to a large number of peers with no
packet loss and extremely low duplicate data rates. We
also showed that a new node could start downloading and
begin play back within a fraction of a second after joining
the network, making it highly suitable to applications like
on-demand media streaming. Finally, we showed that our
system is robust to catastrophic failure. A vast majority of
the nodes were able to download data with no packet loss
even when half the nodes in the system failed simultane-
ously.

So far we have only investigated behavior in acooper-
ative environment. However, Chainsaw is very similar in
its design to the SWIFT [16] incentive-based file-trading
network. Therefore, we believe that we will be able to
adapt SWIFT’s economic incentive model to streaming,
allowing our system to work well in non-cooperative envi-
ronments.
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